
REVIEW ARTICLE
published: 01 May 2012

doi: 10.3389/fneur.2012.00059

Nocturnal mnemonics: sleep and hippocampal
memory processing
Jared M. Saletin1 and Matthew P. Walker 1,2*

1 Sleep and Neuroimaging Laboratory, Department of Psychology, University of California, Berkeley, CA, USA
2 Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA

Edited by:

Sean P. Drummond, University of
California San Diego, USA

Reviewed by:

Mitsuyuki Nakao, Tohoku University,
Japan
Michael Czisch, Max Planck Institute
of Psychiatry, Germany

*Correspondence:

Matthew P. Walker , Department of
Psychology, University of California,
Tolman Hall 3331, Berkeley, CA
94720-1650, USA.
e-mail: mpwalker@berkeley.edu

As critical as waking brain function is to learning and memory, an established literature
now describes an equally important yet complementary role for sleep in information pro-
cessing.This overview examines the specific contribution of sleep to human hippocampal
memory processing; both the detriments caused by a lack of sleep, and conversely, the
proactive benefits that develop following the presence of sleep. First, a role for sleep before
learning is discussed, preparing the hippocampus for initial memory encoding. Second, a
role for sleep after learning is considered, modulating the post-encoding consolidation of
hippocampal-dependent memory. Third, a model is outlined in which these encoding and
consolidation operations are symbiotically accomplished, associated with specific NREM
sleep physiological oscillations. As a result, the optimal network outcome is achieved:
increasing hippocampal independence and hence overnight consolidation, while restoring
next-day sparse hippocampal encoding capacity for renewed learning ability upon awaken-
ing. Finally, emerging evidence is considered suggesting that, unlike previous conceptions,
sleep does not universally consolidate all information. Instead, and based on explicit as well
as saliency cues during initial encoding, sleep executes the discriminatory offline consolida-
tion only of select information. Consequently, sleep promotes the targeted strengthening
of some memories while actively forgetting others; a proposal with significant theoretical
and clinical ramifications.
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Hello darkness, my old friend

I’ve come to talk with you again

Because a vision softly creeping

Left its seeds while I was sleeping

And the vision that was planted in my brain

Still remains

Within the sound of silence

–Sound of Silence–

Paul Simon & Art Garfunkel, February 1964

INTRODUCTION
Beyond anecdotal, literary and even lyrical acknowledgments, a
rapidly expanding corpus of scientific evidence supports a causal
role for sleep in memory processing. This review aims to pro-
vide a synthesis of recent findings in humans, with a focus on
hippocampal-dependent memory. Our goal is to extract consis-
tent themes across domains of memory function that appear to be
regulated by sleep, and provide a framework of sleep-dependent
hippocampal memory processing within which these findings can
be understood. We examine two stages of memory processing (1)
a role for sleep before learning in preparing the hippocampus for
initial formation or “encoding” of new experiences, and (2) a role
for sleep after learning in both non-specific and specific offline
consolidation of recently encoded experiences.

SLEEP BEFORE LEARNING FOR MEMORY ENCODING
Some of the earliest evidence describing the impact of prior sleep
loss on subsequent learning of declarative memories was described
by Morris et al. (1960), and later by Harrison and Horne (2000),
demonstrating impairment in encoding and retention of “tem-
poral memory” (memory for when events occur). In the latter
study, significant impairments in memory were evident even in a
subgroup that received caffeine to overcome non-specific effects
of lower alertness. Interestingly, sleep-deprived subjects displayed
significantly worse insight into their memory encoding perfor-
mance, resulting in lower predictive ability of performance, a
function itself that may also rely in part upon the hippocampus
(Huijbers et al., 2011).

Pioneering work by Drummond et al. (2000) has examined the
neural basis of similar memory impairments using fMRI, inves-
tigating the effects of 35 h of total sleep deprivation on verbal
learning. In those who were sleep-deprived, regions of the tem-
poral lobe were significantly less active during learning, relative
to a control group that had slept, while the prefrontal cortex
actually expressed greater activation. Most interesting, the parietal
lobes, which were not activated in the control group during learn-
ing, were significantly more active in the deprivation group. Such
findings suggest that sleep loss prior to learning (at least follow-
ing one night) produces bi-directional changes in verbal encod-
ing activity, involving the inability of the temporal lobe regions
to engage normally during learning, combined with potential
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compensation attempts by higher cortical regions (Drummond
et al., 2001).

The impact of sleep loss on the specific neural dynamics of
hippocampal memory encoding have been examined using event-
related fMRI (Yoo et al., 2007a). In addition to performance
impairments under conditions of sleep deprivation, and relative to
a control group that slept, a highly significant yet selective deficit
was identified in bilateral regions of the posterior hippocam-
pus, known to be critical for learning new episodic information
(Figure 1). These findings have since been extended by Van Der
Werf et al. (2009), demonstrating that selective slow wave sleep
deprivation alone is sufficient to impair hippocampal memory
encoding ability. Taken together, this collection of findings indi-
cate that sleep disruption as well as total sleep deprivation prior
to learning compromises the function of human hippocampus to
effectively commit new human experiences to memory.

The impact of sleep deprivation on memory formation does not
appear to be universal,but instead,may differ on the basis of factors
such as emotionality. We have examined the encoding of emotion-
ally negative, positive, and neutral words (Walker, unpublished
results). Across all stimulus types combined, sleep deprivation
imposed a 40% reduction in the ability to form new memories,
relative to sleep rested individuals (Figure 2A). However, when
these data were separated into the three affective categories (nega-
tive, positive, or neutral), the magnitude of encoding impairment
differed (Figure 2B). In those that had slept, both positive and neg-
ative stimuli were associated with superior retention levels relative
the neutral condition, consonant with the notion that emotion
facilitates memory encoding (Cahill and McGaugh, 1998). How-
ever, there was severe disruption of encoding and hence later
retention for neutral and especially positive emotional memory in
the sleep-deprived group. In contrast, a relative resistance of neg-
ative emotional memory was observed in the deprivation group.
These data suggest that, while the effects of sleep deprivation are
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FIGURE 1 | Neural basis of sleep-deprivation induced encoding

deficits. Regions of decreased encoding activation in the sleep deprivation
group relative to the sleep control group in bilateral posterior hippocampus,
together with a histogram of parameter estimates (effect size) of averaged
hippocampal activity in each group. Effects are significant at p < 0.001; > 5
contiguous voxels. Modified from Yoo et al. (2007a).

directionally consistent across memory subcategories, the most
profound impact is on the encoding of positive emotional stimuli,
and to a lesser degree, emotionally neutral stimuli. In contrast, the
encoding of negative memory appears to be more resistant to the
effects of one night of total sleep deprivation.

While such evidence describes the detrimental impact of a lack
of sleep, recent work has conversely demonstrated the proactive
benefit of sleep, and specific sleep physiology, in restoring episodic
memory encoding ability (Mander et al., 2011). Hippocampal-
dependent learning capacity was assessed twice across a 6 h inter-
val. Following the first learning session at 12:00, half of the subjects
remained awake, while the other half obtained a 100 min nap
opportunity. Both groups then performed the second learning
session at 18:00. Hippocampal-dependent learning deteriorated
across the day in those who remained awake (Figure 3A). In con-
trast, sleep not only blocked this deterioration in learning capacity,
but triggered a numeric enhancement in hippocampal-dependent
encoding ability. Within the nap group, the extent of learning
restoration (pre- to post-sleep) was positively correlated with both
the amount of stage-2 NREM, and specifically the number of
fast sleep spindles over the left prefrontal cortex (Figures 3B–D).
Moreover, and motivated by the role of the lateral prefrontal cor-
tex and medial temporal lobe structures in episodic memory, EEG
source analysis of these left prefrontal spindles was performed,
revealing an oscillation of activity throughout the spindle event
looping through the left temporal lobe (Figure 3E). Such find-
ings can parsimoniously be accounted for within a hippocampal-
neocortical framework of memory processing (discussed in the
following section), predicting decreased episodic learning capacity
with continued waking experience; a potential limitation of sparse
hippocampal representational coding (Treves et al., 1996). Conse-
quently, NREM sleep spindles, which co-occur with hippocampal
sharp-wave ripples (Siapas and Wilson, 1998; Clemens et al., 2007,
2011; Mölle et al., 2009), are proposed to support a proactive
shift from hippocampal- to increasing cortical-dependence of
previously encoded representations, thereby restoring post-sleep
episodic encoding ability.

Of note, neither the impairments in encoding following depri-
vation (Yoo et al., 2007a) nor the restoration of encoding following
a nap (Mander et al., 2011) appear to be parsimoniously accounted
for on the basis of changes in basic alertness or attention. Specifi-
cally, response times during encoding and testing in both studies,
often used as an indexing of alertness, did not predict learning
ability or associated encoding brain activity, and were not differ-
ent between the respective control groups in either study. This was
similarly true of subjective measure of alertness. Moreover, in the
nap study (Mander et al., 2011), no differences were observed
between the sleep and no sleep groups on a specific alertness
control task.

One consideration when interpreting the findings of studies
that compare between evening and morning learning and test-
ing phases are the inherent changes in alertness and fatigue at
these different times, as well as changes in circadian clock time. In
addition to measuring objective and subject alertness and atten-
tion as potential confounding factors, a nap-paradigm can also
be advantageous in this context (e.g., Mander et al., 2011), allow-
ing for a manipulation of sleep and wakefulness whilst holding
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FIGURE 2 | Sleep deprivation and encoding of emotional and

non-emotional declarative memory. Effects of 38 h of total sleep
deprivation on encoding of human declarative memory (A) when
combined across all emotional and non-emotional categories; (B) When
separated by emotional (positive and negative valence) and non-emotional

(neutral valance) categories. When comparing between positive and
negative words, within group, no significant difference was found for the
sleep group while those that were deprived demonstrated greater recall
for negative items (p < 0.05). †p < 0.08, *p < 0.05, **p < 0.01, error bars
represent S.E.M.
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FIGURE 3 | (A) Episodic learning ability (% face-name pairs encoded) in the
nap and non-nap group at 12:00 and 18:00 (left), and the change in episodic
learning ability between sessions (18:00–12:00; right). Episodic learning ability
in a subset of nap and no-nap subjects (n = 10 per group), matched on initial
12:00 performance, is presented in the center box. Comparisons (line across
bars) in both plots reflect significance* at: p < 0.05. Error bars represent
S.E.M. (B) Within the nap group, correlations with stage-2 NREM sleep and
episodic learning ability at 12:00 (left-panel), 18:00 (middle-panel), and the
change in learning ability between session (18:00–12:00; right-panel). (C)

Topographic correlations (color-bar indicates Pearson’s correlation strength) in
the nap group between fast sleep spindles and episodic learning ability at
18:00 (post-nap), significant in derivations F3, F4, Fz, F7, F8, Fp1, and Fp2 over
PFC, maximal at F7 (r = 0.536, p = 0.018). (D) Of these derivations, the
change in episodic learning ability (18:00–12:00), significantly and conjointly
correlated with fast spindles at derivation F7 over left PFC (r = 0.535,
p = 0.018). (E) sLORETA source time-series of fast sleep spindles identified
by onset at F7, demonstrating a current-density loop recurring in left temporal
lobe, proceeding the peak of the spindle. Modified from Mander et al. (2011).
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timing (both clock and circadian) of learning and testing constant
between conditions.

SLEEP AFTER LEARNING, FOR MEMORY CONSOLIDATION
A robust and consistent literature has demonstrated the need
for sleep after learning in the subsequent consolidation of
hippocampal-dependent memory (Gais et al., 2002; Graves et al.,
2003; Rauchs et al., 2004; Schabus et al., 2004; Fischer et al., 2005;
Walker et al., 2005; Clemens et al., 2006; Ellenbogen et al., 2006;
Ferrara et al., 2006; Fogel and Smith, 2006; Gais et al., 2006; Mar-
shall et al., 2006; Wagner et al., 2006; Gais et al., 2007; Rasch et al.,
2007; Alvarenga et al., 2008; Axmacher et al., 2008; Backhaus et al.,
2008; Wilhelm et al., 2008; Landsness et al., 2009; Ramadan et al.,
2009; Rudoy et al., 2009; Poe et al., 2010; Wamsley et al., 2010). In
humans, arguably the first experimental description of a benefi-
cial role of sleep for memory stabilization was provided by Jenkins
and Dallenbach (1924), indicating a protective benefit of sleep
(after approximately 4 h) in preventing the normal decay-curve of
forgetting that develops across time spent awake.

Building on these seminal findings, Ellenbogen et al. (2006),
have since revealed the extent of sleep’s ability to protect declar-
ative memories from forgetting by systematically manipulating
interference, employing an “A–B – A–C” paradigm. In this par-
adigm, participants first learned unrelated word-pair associates,
designated as list A–B (e.g., leaf-wheel etc.). After sleep at night,
or wakefulness during the day, half of the subjects in each group
learned a new, interfering list containing a new associate paired
with the first word,designated as list A–C (e.g., leaf–nail etc),before
being tested on the original A–B list (e.g., leaf–wheel etc). In the
groups that did not experience the interfering challenge – simply
being trained and then tested on list A–B – sleep provided a modest
benefit to memory recollection (Figure 4). However, when testing
the groups that were exposed to interfering list learning (list A–C)
prior to recalling the original list (list A–B), a large and significant
protective benefit was seen in those that slept (Figure 4). There-
fore, sleep conferred a consolidation benefit that rendered recently
encoded episodic memories resistant to the potentially aggravated
effects of new learning of somewhat overlapping (hence poten-
tially competing) memory representations the next day. Yet, it was
only by using an interfering challenge, the A–C list, that the true
benefit of sleep’s protection of memory was revealed; a benefit that
would not necessarily have been evident in a standard study-test
memory paradigm. Such evidence would favor a mechanism by
which sleep either (1) solidified the original (A–B) hippocampal
representations, forcing encoding of related representations (A–C)
in non-overlapping hippocampal networks, or (2) the transforma-
tion of the original (A–B) representations to a less hippocampally
dependent state, allowing for hippocampal encoding of related
new (A–C) representations that overlap with those previously cod-
ing the original (A–B) representations, but without detrimental
interference.

Several reports by Born and colleagues have shown offline
improvement on hippocampus-dependent memory following
post-learning sleep attributed to early night sleep, rich in SWS
(Diekelmann and Born, 2010). Evidence for such an effect comes
first from studies demonstrating that partial deprivation of early
SWS-rich sleep impairs recall of memories learned prior to sleep

FIGURE 4 | Impact of sleep on the consolidation and stabilization of

declarative memory. Percent correct recall for B words from the
original A–B pair after a 12 h retention interval of either wake or sleep
following no interference or interference learning (list A–C). †p < 0.10,
*p < 0.05, **p < 0.001; error bars indicate S.E.M. Modified from
Ellenbogen et al. (2006).

(Gais et al., 2000; Wagner et al., 2001; Wagner et al., 2002; Gais
and Born, 2004; Fischer et al., 2011). The same group has also
recently demonstrated a causal role for the slow cortical oscil-
lation (< 1 Hz) of NREM sleep in beneficially enhancing the
consolidation of declarative memories by increasing activity in
this frequency range. Following learning of a word-pair list, tran-
scranial direct current stimulation was applied over the prefrontal
cortex of participants during early night SWS, inducting slow
oscillation-like field potentials (in this case, at 0.75 Hz; Marshall
et al., 2004, 2006). Consequently, a greater benefit on overnight
retention was observed for the set of information learned prior to
sleep. Direct current stimulation not only increased the amount
of slow oscillation activity, as well as sleep spindle frequency activ-
ity, during the simulation period (and for some time after), but
also enhanced next-day word-pair retention. These findings were
interpreted in the context of slow oscillations potentially triggering
spindle-regulated plasticity in cortex.

One mechanism proposed to underlie the benefit of sleep
on hippocampal-dependent learning is the reactivation of pre-
viously encoded hippocampal memory representations during
subsequent NREM sleep. In animals, the signature firing patterns
of these hippocampal (as well as cortical) networks expressed
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during waking performance of spatial tasks and novel experi-
ences appear to be “replayed” during subsequent NREM sleep
(and in some studies, also REM; Wilson and McNaughton, 1994;
Skaggs and McNaughton, 1996; Dave et al., 1998; Dave and Mar-
goliash, 2000; Poe et al., 2000; Louie and Wilson, 2001; Ribeiro
and Nicolelis, 2004; Jones, 2005; Ji and Wilson, 2007). Extending
these findings, related evidence has been reported in the human
brain using a virtual maze task in combination with positron
emission tomography (PET) scanning (Peigneux et al., 2004). Day-
time learning was initially associated with hippocampal activity.
Then, during post-training sleep, there was a re-emergence of hip-
pocampal activation, specifically during SWS. Most compelling,
however, the amount of SWS reactivation in the hippocampus
was proportional to the amount of next-day task improvement,
suggesting that this reactivation is associated with offline memory
improvement.

Building on the framework that memories, particularly those
involving the hippocampus, are reactivated at night during sleep,
recent work has taken advantage of the classical psychology effect
of cue-dependent recall, and translated it into a sleep-dependent
consolidation paradigm Rasch et al. (2007). Following learning
of a spatial memory task that was paired with a rose sent cue,
the same rose odor was re-presented during subsequent SWS
that night – a time when consolidation was presumed to be
occurring. Relative to a control condition where the odor was
not presented again during SWS, the re-perfusion of the rose
scent at night resulted in significantly improved recall the fol-
lowing day (when recall occurred without any odor cue). More-
over, the representation of the odor during SWS when previ-
ously paired with learning during encoding resulted in greater
(re)activation of the hippocampus during SWS, as measured
with fMRI. These findings support a role for SWS in the con-
solidation of declarative memory in relation to a prior context
(here, odor), and may indicate an active reprocessing of ini-
tially hippocampal-dependent information during SWS. Building
on these findings, Rudoy et al. (2009) have recently demon-
strated similar sleep-dependent reactivation of memory using
auditory rather than olfactory cues, describing a selective ability

to manipulate individual item memory consolidation during
NREM.

Determining the neural mechanisms that promote sleep-
dependent human memory consolidation remains an active topic
of research, and debate. It is perhaps unlikely that multiple dif-
ferent memory systems, involving diverse cortical and/or subcor-
tical networks, require the same underlying neural mechanisms
for their modulation. Even if they do, it is not clear that this
process would rely on just one type of sleep-stage physiology.
Multiple models of sleep-dependent memory have been offered
to account for the overnight facilitation of recall, which build
on different aspects of neural activity during sleep. A systems-
level model of sleep-dependent memory processing (for discussion
of a homeostatic cortical model of sleep-regulated plasticity, see
Tononi and Cirelli, 2003) can be considered that involves reciprocal
hippocampal-neocortical communication, with potential benefits
not only for offline consolidation, but also renewed hippocampal
encoding capacity upon awakening.

Within this framework (Marr, 1971; Squire and Alvarez, 1995;
Squire et al., 2004; Frankland and Bontempi, 2005), the hippocam-
pus initially binds cortical elements of an experience, creating a
holistic episodic memory by way of hippocampal-cortical con-
nections (Figure 5). Over time, and by way of iterative offline
processes, increasing cortico-cortical connections develop, associ-
ated with decreasing dependence on the hippocampus. Therefore,
the classical model of memory consolidation holds that neocor-
tical structures become increasingly important for the represen-
tation of consolidated episodic memories, while the correspond-
ing contribution of the hippocampus progressively decreases. In
addition to its role in binding distributed cortical memory compo-
nents, the hippocampus plays a critical role in reactivating these
networks, specifically during sleep. This process of reactivation,
assumed to occur over multiple sleep cycles across a night and/or
multiple occurrences of sleep over many nights, is proposed to
gradually strengthen the initially weak connections between neo-
cortical sites, thereby reinforcing them. Eventually, this strength-
ening is suggested to allow the original information to be engaged
in the cortex, largely independent of the hippocampus.

Cortical modules

Hippocampus time

memory consolidation
WAKE SLEEP WAKE

slow-waves

restored encoding capacity 
sleep-spindles

A B C

FIGURE 5 | Universal model of sleep-dependent

hippocampal-neocortical memory consolidation. (A) At encoding the
hippocampus rapidly integrates information within distributed cortical
modules. (B) Successive sleep-dependent reactivation of this

hippocampal-cortical network leads to progressive strengthening of
cortico-cortical connections, (C) which over time, allow these memories to
become independent of the hippocampus and gradually integrated with
pre-existing cortical memories. Modified from Frankland and Bontempi, 2005.
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It has been posited that such a sleep-dependent process can offer
two symbiotic benefits (Walker, 2009). The first is that episodic
memories from the day prior should be more resistant to inter-
ference from new hippocampal learning the next day, due to the
increased cortico-cortical connections formed during overnight
consolidation (Figure 5). It is precisely this behavioral effect that
was reported in the study by Ellenbogen et al. (2006), showing
greater post-sleep resistance to interference, using the A–B – A–
C paradigm. In addition to consolidation, however, the second
suggested benefit of this sleep-dependent dialog is the post-sleep
reinstatement of sparse encoding capacity within the hippocam-
pus, restoring the efficient ability for renewed next-day episodic
encoding (Figure 5). This second premise appears to accurately
explain the findings previously discussed describing a reduction
in hippocampal encoding ability without intervening sleep (Yoo
et al., 2007a; Van Der Werf et al., 2009), and conversely, the restora-
tion of hippocampal-dependent learning following the presence
of sleep (Mander et al., 2011).

Several reports have provided evidence supportive of this sleep-
dependent dialog and neural transformation of declarative mem-
ory. In the first such report, Takashima et al. (2006) examined
the benefit of daytime naps on episodic declarative memory con-
solidation. In addition to a long-term evaluation of memory over
3 months, there was also a short-term evaluation of memory across
the first day, which included an intervening nap period (90 min)
between training and testing of the original studied (“remote”)
stimuli. The duration of NREM SWS during the intervening nap
correlated positively with later recognition memory performance,
yet negatively with retrieval-related activity in the hippocampus,
consistent with the notion of episodic representations becoming
less dependent on the hippocampus, post-sleep. Extending these
findings, Maquet and colleagues have since demonstrated that one
night of post-training sleep deprivation, even following recovery
sleep, significantly compromises these hippocampal-neocortical
neural dynamics and associated memory recollection (Gais et al.,
2007).

Beyond the contribution of NREM slow waves, a number of
reports have described an association between NREM sleep spindle
events and memory, including hippocampal-dependent learning.
These short (∼1 s) synchronous bursts of activity are expressed
in the EEG in the 11–15 Hz frequency range (Sejnowski and Des-
texhe, 2000; Steriade, 2001; Smith et al., 2004), and coincide with
hippocampal sharp waves and ripples (Siapas and Wilson, 1998;
Sirota et al., 2003; Clemens et al., 2007, 2011; Mölle et al., 2009;
Diekelmann and Born, 2010), possibly reflecting reactivation of
learned memory representations (Mölle et al., 2006; Born, 2010;
O’Neill et al., 2010).

Supporting a role for spindles in episodic memory processing,
Gais et al. (2002), have shown significantly higher sleep spindle
density following daytime episodic learning session (encoding of
word-pair associates). Moreover, spindle density was associated
with next day memory recall. These findings mirror observations
by Meier-Koll et al. (1999), who reported a similar increase in
spindles following learning of a hippocampally dependent maze
task, and by Clemens et al. (2005) who have since identified a
correlation between spindle density and overnight verbal memory
retention (although interesting, not memory for faces). That such

results reflect spindle-related memory processing is supported
by recent data demonstrating that the same cortical areas active
during learning are also (re)activated during post-encoding sleep
spindle events (Bergmann et al., 2012). This learning-dependent
change in spindle-related activity extends that of use-dependent
changes in EEG slow waves that may reflect homeostatic process
(Kattler et al., 1994; Huber et al., 2006).

Continued evidence suggests that sleep spindles can be sepa-
rated into two subtypes based on frequency:“slow”(11–13 Hz) and
“fast” (13–15 Hz; Werth et al., 1997; Zeitlhofer et al., 1997). The
relevance of this separation from a memory consolidation perspec-
tive is highlighted by neuroimaging findings demonstrating that
fast spindles are associated with, amongst other regions, signifi-
cantly greater activation within the hippocampal complex (Sch-
abus et al., 2007). Moreover, recent fMRI data have demonstrated
that the occurrence of fast sleep spindles coincide with moments
of increased functional connectivity between the hippocampus
and areas of neocortex (Andrade et al., 2011), supporting a postu-
lated component of the hippocampal-neocortical model of sleep-
dependent memory consolidation. Indeed, a growing number of
reports describe select associations between episodic memory and
fast- but not slow-spindle activity (Tamaki et al., 2008; Man-
der et al., 2011; Saletin et al., 2011; van der Helm et al., 2011).
Nevertheless, the role of specific spindle frequency subtypes, and
their local topographic influence, in hippocampal- and extra-
hippocampal-dependent memory processing represents a target
for future research, with early discriminatory findings beginning
to emerge (van der Helm et al., 2011). Secondly, while the role
for sleep spindles in declarative memory processing is increasingly
clear, there remains the need to dissociate which feature or combi-
nation of features of the spindle oscillation govern these memory
processing advantages (e.g., number Clemens et al., 2005, density
Saletin et al., 2011, or amplitude/power Schabus et al., 2008).

A consensus on the differential role of slow waves and spin-
dles has also yet to be reached, with reports implicating sleep
spindles (e.g., Gais et al., 2002; Schabus et al., 2004; Clemens
et al., 2006; Nishida and Walker, 2007; Genzel et al., 2009; Saletin
et al., 2011) or slow waves (e.g., Marshall et al., 2006; Takashima
et al., 2006; Backhaus et al., 2007; Landsness et al., 2009) in mem-
ory processing. However, what, if any, inter-relationships exist
between spindles and slow waves remains largely uncharacterized
(Molle et al., 2011) and will require studies capable of distin-
guishing between spindle-driven and slow wave-driven memory
mechanisms, or identifying their combined influence. Moreover,
the potential role for REM sleep and its associated physiologi-
cal features in declarative memory processing remains relevant
(Rauchs et al., 2004; Walker, 2009, see below discussion). By way
of such future investigations, an increasingly nuanced character-
ization of dissociable sleep-dependent memory mechanisms can
be reached.

While evidence reviewed above focuses on NREM sleep in
declarative memory consolidation, REM sleep should not be
discounted. REM sleep may be especially critical for process-
ing of emotionally salient memories. Early work reported that
the overnight retention of emotional details of a narrative story,
relative to emotionally neutral details, was superior following late-
night sleep (a time period rich in REM sleep; Wagner et al., 2001). It
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has subsequently been demonstrated that the speed of recognizing
emotional face expressions presented prior to sleep is significantly
improved the next day, the amount of which positively correlated
with the amount of intervening REM sleep (Wagner et al., 2007).
Moreover, not only does the amount of time and speed of entry
into REM sleep predict the degree of subsequent strengthening
and hence offline consolidation of emotional (and not neutral)
memory, but specifically the amount of REM sleep theta EEG
activity (4–7 Hz) expressed over the prefrontal cortex that pre-
dicts memory retention (Nishida et al., 2009). These findings have
lead to the proposal that REM sleep represents a neurobiological
brain-state particularly amenable to emotional memory process-
ing (Pare et al., 2002; Hu et al., 2006; Walker, 2009; Walker and
van der Helm, 2009), with theta oscillations proposed as a carrier
frequency that potentially allows disparate brain regions that ini-
tially encode information to selectively interact offline. By doing
so, REM sleep theta may afford the ability to strengthen distrib-
uted aspects of specific memory representations across related
but different anatomical networks, and/or promote their integra-
tion into pre-existing autobiographical memory networks (Cahill,
2000; Jones and Wilson, 2005).

CONSOLIDATION: SELECTIVE OR UNIVERSAL SLEEP
BENEFITS?
Evidence reviewed to this point implicates sleep in the consolida-
tion and hence superior offline retention of declarative memory,
relative to equivalent time awake. However, the capacity to for-
get can, in certain contexts, be as important as the need for
memory retention, both in day-to-day life (e.g., forgetting last
week’s parking spot in preference for today’s), and clinically (e.g.,
post-traumatic stress disorder and addiction). Considered to be
adaptive, selective forgetting has been shown to decrease neural
resources required for targeted remembering (Levy and Ander-
son, 2002; Kuhl et al., 2007), and as a consequence, may afford

improved efficiency of subsequent recall of select information
(Block, 1971; Anderson et al., 2004; Levy and Anderson, 2008).
Building on such evidence, here we offer the thesis that the goal of
offline sleep-dependent memory processing is not the verbose,
ubiquitous, and non-selective consolidation of all information
recently encoded. Nor is it the generalized weakening of repre-
sentations (Crick and Mitchison, 1983). Instead, we suggest offline
sleep-dependent memory processing may involve a discriminatory
mechanism, affording a balance of retention, and forgetting, with
item selection determined by salience cues present during wake,
such as novelty, emotionality, reward value, and explicit conscious
instruction (Figure 6).

Emerging reports have begun to support this more nuanced,
discriminatory framework of sleep-dependent memory process-
ing. Fitting with such prior section, sleep (Hu et al., 2006;
Atienza and Cantero, 2008), and specifically REM sleep (Wag-
ner et al., 2001; Nishida et al., 2009), has been demonstrated to
target the selective consolidation of emotional relative to non-
emotional experiences. Moreover, sleep appears capable of sepa-
rating episodic experiences into component parts, preferentially
consolidating those of greatest affective salience (Payne et al.,
2008). Beyond emotion, sleep has recently been demonstrated to
selectively enhance information based on waking knowledge of
potential monetary reward prior to sleep (Fischer and Born, 2009),
even when such knowledge of a reward was announced after initial
learning (but before sleep). Further, the mere knowledge that some
learned items will be subject to later post-sleep testing, presumably
involving a difference in salient relevance, amongst other things,
can selectively increase the offline sleep-dependent consolidation
benefit (Wilhelm et al., 2011).

Explicit conscious instruction at the time of encoding also
appears to represent a powerful modulatory influence on sub-
sequent sleep-dependent consolidation. Using a directed forget-
ting paradigm, the impact of cued instruction during learning to

Cortical modules

Hippocampus time

selective memory consolidation
WAKE SLEEP WAKE

restored encoding capacity 

emotion

reward

intent

Encoding Cue

none

Synchronous NREM and REM oscillations
A B C

FIGURE 6 | New selective model of sleep-dependent

hippocampal-neocortical memory consolidation. (A) At encoding the
hippocampus rapidly integrates information within distributed cortical
modules, however certain memories (colored nodes) are weighted over
others by means of relevant information (e.g., emotion, reward, or
intention), whereas other memories lack this relevance tag (gray nodes).
(B) Successive sleep-dependent reactivation of this hippocampal-cortical

network, by way of synchronous NREM (sleep spindle and slow wave) as
well as REM (theta) oscillation, leads to progressive strengthening of
cortico-cortical connections, though only for those memories deemed
relevant by associated encoding information (C) which over time, leads to a
selective consolidation of certain learned items, whereas other items, not
given a benefit of selectivity, are allowed to dissipate at both hippocampal
and neocortical levels. Modified from Frankland and Bontempi (2005).
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either remember or forget, prior to sleep, on subsequent differen-
tial retention of memory after sleep has recently been examined
(Saletin et al., 2011). Relative to time awake, sleep subsequently
and selectively ignored the facilitation of items previously cued to
be forgotten, yet preferentially enhance recall for items cued to be
remembered (Figure 7A). This effect was further characterized as
a difference-score (remember words – forget words). This differ-
ence measure, reflecting the efficiency of accomplishing targeted
remembering and forgetting, demonstrating a greater separation
between recall of remember relative to forget items following sleep
(Figure 7B). Thus, sleep did not benefit all memories universally,
instead being selective for those items cued for remembering and
not those cued to be forgotten, indicative of specificity based on
prior waking instruction. Moreover, the magnitude of this directed
forgetting effect was positively predicted by fast spindles over left
parietal cortex, suggesting their potential role in differential “gat-
ing” of offline consolidation, governing the directional fate of each

memory item class (remember, forget; Figure 7C). Additionally,
the same parietal fast spindles differentially and bi-directionally
modulated each word class individually; positively predicting
recall for remember words alone while, conversely, negatively pre-
dicting recall for forget words (Figure 7D,E). This evidence favors
a sleep mechanism that not only promotes remembering but also
actively instigates forgetting. Offering deeper anatomical insights,
EEG source analyses revealed an loop of activity occurring dur-
ing these parietal fast spindle events, consisting of areas previously
implicated in differential remembering and forgetting memory
(Wylie et al., 2008): prefrontal, medial temporal, and posterior
parietal cortices. Such a network may support memory modula-
tion whereby“top-down”cues of instructed intent (prefrontal cor-
tex; remember, forget) are coordinated and utilized during offline
processing of “bottom-up” item memory (medial temporal lobe),
and potentially integrated into association regions (parietal cor-
tex) for consolidation (Shimamura, 2011). Related findings have

FIGURE 7 | Role of sleep on directed remembering and forgetting.

(A) Memory performance: Number of words recalled based on prior cue
instruction (Remember, R-words; Forget, F-words) in the nap and no-nap
groups and the (B) efficiency measure of directed forgetting, calculated
as the subtraction of these scores (R–F; expressed as a proportion of
total recall). Between group comparisons (line across bars) reflect
significance at: *p < 0.05 and **p < 0.01. Error bars represent S.E.M.
(C–E) Physiological data. Relationship between memory performance

and sleep spindles: (C) Scatter-plot and linear regression of the
relationship between fast sleep-spindle density at P3 and the R–F score
across participants in the nap group. (C–D) Scatterplots demonstrating
that the same P3 fast spindles (D) positively predict R-words and (E)

negatively predict F-words, though neither correlation is as strong as the
R–F difference measure, suggesting a relative selectivity of
sleep-dependent memory consolidation. Modified from Saletin et al.
(2011).
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been reported using an episodic memory paradigm involving the
intentional suppression and contemplation of word items prior to
sleep, with those intentionally suppressed during initial exposure
showing significantly less offline sleep-dependent memory bene-
fit (Fischer et al., 2011). Adding to these findings, post-encoding
sleep deprivation can further impair the subsequent offline devel-
opment of these differential remember and forget consolidation
effects, dependent, in part, on hippocampal signals at the time of
encoding (Rauchs et al., 2011).

It is of note that the presentation of olfactory cues during sleep
for memory reactivation described earlier only resulted in facil-
itated overnight consolidation when the same odor was initially
presented at the time of learning (Rasch et al., 2007). Odor pre-
sented during sleep in isolation, without prior waking association
with learning, conferred neither an overnight memory consoli-
dation advantage nor elevated hippocampal reactivation during
sleep. This finding appears consistent with the proposed model
of selective memory consolidation, suggesting that even the suc-
cess of memory reactivation during sleep critically depends on
associating those memories with the cues during initial encoding,
prior to sleep. Such associations would effectively label specific
memory representations at the time of learning with contextually
salient tags; offering the capacity for selective reactivation, and
subsequent consolidation, during sleep.

A further circumstance that may determine selective memory
consolidation is the relationship between newly learned repre-
sentations and pre-existing autobiographical memory schemata
(Lewis and Durrant, 2011). Experiences that hold relevance to
the organism’s autobiographical past have the potential for being
registered, as a consequence, with superior salience, and hence
undergo preferential overnight consolidation. Similarly, employ-
ing learning strategies such as mnemonic techniques that assist in
elaboration on, and integration amongst, new learning (or even
pre-existing information; Wang and Thomas, 2000) may similarly
promote selective offline consolidation during sleep.

When taken together, this collection of studies suggest that sleep
does not universally consolidate all episodic memories learned
during the prior day(s). Instead, sleep appears to be more ecolog-
ically attuned to qualitative aspects of encoded experiences at the
time of initial learning e.g. emotionality (Hu et al., 2006; Wagner
et al., 2006, 2007; Payne et al., 2008; Nishida et al., 2009; Walker and
van der Helm, 2009; Payne and Kensinger, 2011), reward poten-
tial (Fischer and Born, 2009; Wilhelm et al., 2011), or explicit
cue instructions and intentions (Fischer et al., 2011; Rauchs et al.,
2011; Saletin et al., 2011), resulting in discriminatory offline mem-
ory processing. Such findings additionally offer key anatomical
targets for the understanding of sleep-dependent memory process-
ing, focusing on those regions whose interactions with the medial
temporal lobe support selective memory processing e.g., amygdala
for emotional memories (Hu et al., 2006; Yoo et al., 2007b; Nishida
et al., 2009; Walker and van der Helm, 2009; Payne and Kensinger,
2011), striatum for reward signals (Knutson and Adcock, 2005)
and the prefrontal cortex for directed intentional cues (Ander-
son et al., 2004; Wylie et al., 2008; Rauchs et al., 2011). Paren-
thetically, this selective sleep benefit, including the bi-directional
influence of spindles on remembering and forgetting, seems dif-
ficult to reconcile within simple opportunistic frameworks of

offline consolidation (Mednick et al., 2011). Instead, such evidence
appears to warrant a shift in perspective from notions of sleep
affording a universal consolidation benefit to recently encoded
information (Figure 4), to one in which unique and specific
sleep-stage physiologies select item information for preferential
retention, based on prior waking cues (Figure 6); a process con-
ceptually similar to a sleep-slave consolidation system, governed by
prior waking cues, and yielding discriminatory long-term memory
consolidation.

While remaining speculative,potentially novel clinical and ther-
apeutic implications stem from this revised model of selective
memory consolidation. Perhaps most prominent are the circum-
stance of anxiety disorders as well as major depression, both of
which express dysfunction in memory as well as sleep abnor-
malities (Armitage, 1995; van Wingen et al., 2010; Dickie et al.,
2011; Harvey, 2011). In major depression, disproportionate rumi-
nation of past negative autobiographical events can be prevalent,
contributed to by the proposal of a bias in initial encoding of neg-
ative experiences (Taconnat et al., 2010; van Wingen et al., 2010).
In the context of our model, this initial encoding bias may lead
to the maladaptive further potentiation of those selectively nega-
tive experiences during sleep, the consequence of which would be
their persistent dominance in long-term memory, further encour-
aging negative rumination. In anxiety disorders, including post-
traumatic stress disorder and phobia, a similarly biased associative
encoding of episodic experiences with strong negative aversive
emotion (Mitte, 2008; Dickie et al., 2011) may tag those experi-
ences for disproportional selective consolidation, potentiating the
trauma experiences or phobic associations (and see Walker and
van der Helm, 2009 for discussion of emotion processing of mem-
ory in PTSD). Conversely, however, these same mechanisms could
be considered for use in therapeutic intervention. In both condi-
tions, targeting the problematic memory sources during wake, by
recollection and hence reactivation (Lee et al., 2004; Stickgold and
Walker, 2005; Tronson and Taylor, 2007), can offer the capacity for
developing new positive (rather than negative), or simply neutral,
associations, pre-sleep. Subsequent selective consolidation of these
new positive or neutral associations in sleep, put in place during
prior wake, could help foster a revised and therapeutically advan-
tageous collection of memory representations in the individual’s
autobiographical history. Finally, similar bi-directional notions of
memory modulation may also be relevant in addiction, both in
the maladaptive potentiation of addiction associations, but also
their potential targeted reversal leading to extinction of acquired
associations.

CONCLUSIONS
While not fully complete, a new taxonomy of sleep-dependent
memory processing is emerging. This revised view describes a
symbiotic role for sleep both before and after learning in optimally
coordinating the initial encoding and subsequent consolidation
of hippocampal-dependent memory, respectively. By way of such
a mechanism, sleep appears capable of maximizing retention
only of the most salient, relevant hippocampal memories, while
forgetting (perhaps actively), those non-essential to the organ-
ism – an optimal algorithm for equilibrium within memory
networks.
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