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Summary

Clinical evidence suggests a potentially causal interaction
between sleep and affective brain function; nearly all mood

disorders display co-occurring sleep abnormalities, com-
monly involving rapid-eye movement (REM) sleep [1–4].

Building on this clinical evidence, recent neurobiological
frameworks have hypothesized a benefit of REM sleep in

palliatively decreasing next-day brain reactivity to recent
waking emotional experiences [5, 6]. Specifically, the

marked suppression of central adrenergic neurotransmit-
ters during REM (commonly implicated in arousal and

stress), coupled with activation in amygdala-hippocampal
networks that encode salient events, is proposed to (re)

process and depotentiate previous affective experiences,
decreasing their emotional intensity [3]. In contrast, the

failure of such adrenergic reduction during REM sleep has
been described in anxiety disorders, indexed by persistent

high-frequency electroencephalographic (EEG) activity

(>30 Hz) [7–10]; a candidate factor contributing to hyper-
arousal and exaggerated amygdala reactivity [3, 11–13].

Despite these neurobiological frameworks, and their predic-
tions, the proposed benefit of REM sleep physiology in

depotentiating neural and behavioral responsivity to prior
emotional events remains unknown. Here, we demonstrate

that REM sleep physiology is associated with an overnight
dissipation of amygdala activity in response to previous

emotional experiences, altering functional connectivity and
reducing next-day subjective emotionality.

Results and Discussion

Building on the specific predictions of these neurobiological
frameworks [3, 5, 6] and combining functional magnetic reso-
nance imaging (fMRI) and electroencephalography (EEG) sleep
recordings, we tested the hypothesis that (1) sleep decreases
amygdala and behavioral reactivity in response to previously
encountered emotional experiences, associated with reestab-
lishedmedial prefrontal cortex connectivity and (2) these brain
and behavioral sleep benefits are proportional to the extent
of decreased central adrenergic levels during rapid-eyemove-
ment (REM) sleep, as reflected by reduced gamma (30–40 Hz)
EEG activity; a validated proxy indexing reduced central
adrenergic activity [7–10]. In short (see Supplemental Experi-
mental Procedures available online), 34 healthy adults (age:
18–30 years) were randomly assigned to one of two groups.
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Each performed two repeat fMRI tests (test 1, test 2), sepa-
rated by 12 hr containing a night of EEG-recorded sleep (sleep
group, n = 18, ten females) or awaking day (wake group, n = 16,
nine females; Figure 1). During each test, participants viewed
and rated the subjective emotional intensity of 150 standard-
ized affective pictures [14] on a 125 scale, corresponding to
increasing intensity. Importantly, participants viewed the
same stimuli at both test sessions, affording a measure of
change in emotional reactivity to previously experienced
affective stimuli (test 2 – test 1), followingwake or sleep. Partic-
ipants additionally performed a circadian control test at the
second fMRI session, involving presentation of a novel set of
affective stimuli (Supplemental Experimental Procedures).
This control test allowed confirmation that behavioral and
fMRI differences in reactivity identified following wake and
sleepwere independent of time of day (Supplemental Results).

Differences in Amygdala Reactivity

We first sought to determine the change in emotional brain
reactivity following wake or sleep, focusing a priori on the
amygdala [3, 5, 6]. Consistent with the experimental predic-
tion, a significant group (wake, sleep) 3 test (test 1, test 2)
interaction was observed in bilateral amygdala, revealing an
overnight decrease in reactivity in the sleep group, yet an in-
crease across the day in the wake group (Figures 2A and
2B). Moreover, and consonant with the proposed function of
top-down regulation [13, 15–21], these overnight reductions
in amygdala activity were additionally associated with
changes in ventromedial prefrontal cortex (vmPFC) functional
connectivity. Specifically, a significant group (wake, sleep) 3
test (test 1, test 2) amygdala connectivity interaction was
observed with the vmPFC (Figures 2C and 2D), expressing
an overnight increase in the sleep group and converse
decrease across the day in the wake group. Thus, a night of
sleep decreased amygdala reactivity in response to previously
encountered emotional stimuli. Furthermore, this overnight
dissipation in amygdala activity was further associated with
an increase in vmPFC connectivity.

Change in Subjective Emotional Reactivity

Next, we tested the prediction that these overnight decreases
in amygdala responsivity were accompanied by a correspond-
ing reduction in subjective emotional intensity ratings, specif-
ically for the most intense emotional responses (5-ratings),
where the greatest hypothesized benefit of sleep should
occur. As with amygdala activity, a significant group (wake,
sleep)3 test (test 1, test 2) interaction was observed in intense
emotional ratings (p < 0.05; Figures 3A and 3B), decreasing
in the sleep group (p < 0.05) while increasing in the wake
group. Indeed, within the sleep group, there was a significant
linear shift in the profile of change across the 1–5 ratings (p <
0.001), with reductions in the most intense ratings (4s and
5s), and a progressive increase in neutral ratings (1s and 2s;
Figure 3A). In contrast, no significant linear trend or reductions
in extreme emotional ratings (4s and 5s) were observed in the
wake group (Figure 3B). Therefore, the overnight decrease in
amygdala activity following sleep was additionally accompa-
nied by a concomitant reduction in subjective emotional

http://dx.doi.org/10.1016/j.cub.2011.10.052
http://dx.doi.org/10.1016/j.cub.2011.10.052
mailto:mpwalker@berkeley.edu


Figure 1. Experimental Design

Both groups performed an emotion reactivity test twice inside the functional

magnetic resonance imaging (fMRI) scanner; separated by 12 hr, involving

the rating and subsequent rerating of the same standard set of 150 affective

picture stimuli (three example images provided). The change in emotional

reactivity following sleep (sleep group) or wake (wake group) was assessed

by comparing data at test 1 (presleep or prewake) with that at test 2 (post-

sleep or postwake); test 2 – test 1. To examine possible time-of-day differ-

ences in emotional reactivity, independent of wake or sleep, we performed

an additional circadian control test immediately after test 2 (morning in the

sleep group, evening in thewake group) was performed by both groups. The

circadian control test consisted of a novel set of 150 emotional images not

seen before, matched in terms of arousal and valence to the original set

used in test 1 and test 2 (sets used counterbalanced as either the experi-

mental set or circadian control set).

Figure 2. fMRI Differences in Emotional Reactivity and Connectivity

(A and B) Change in emotion reactivity: group 3 test session interaction in

bilateral amygdala (blue), demonstrating a significant decrease in activity

from test 1 to test 2 in the sleep group yet increase in the wake group

(peak Montreal Neurological Institute [MNI] coordinates [x, y, z]; left: –27,

0, 227; Z score = 3.07; right: 27, 0, –27; Z score = 3.14).

(C andD) Change in functional connectivity: group3 test session interaction

in amygdala-ventromedial prefrontal cortex (vmPFC) connectivity (yellow),

demonstrating increased connectivity from test 1 to test 2 in the sleep

group yet decreased coupling in the wake group (peak MNI coordinates

[x, y, z]; –6, 30,27; Z score = 3.22). Differences in activation and connectivity

thresholded at p < 0.05 familywise error corrected formultiple comparisons.

*p < 0.05; error bars represent SEM.
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reactivity in response to these previously encountered affec-
tive stimuli.

Associations with REM Sleep Physiology

We finally sought to test the prediction that the overnight
decreases in amygdala and behavioral reactivity in the sleep
group were predicted by the extent of reduced REM sleep
gamma EEG activity; a validated marker of decreased central
adrenergic activity [7–10]. Analysis focused on prefrontal
EEG activity, based on this region’s dense adrenergic innerva-
tion [22, 23] and established role in emotion regulation [24, 25].
Consistent with this prediction, the extent of overnight
decrease in both amygdala and behavioral reactivity was
significantly correlated with the extent of reduced prefrontal
gamma EEG activity during REM (Figures 4A–4D), such that
those with the lowest levels of REM-gamma (indicative of
lowest central adrenergic activity [7–10]) expressed the largest
overnight decrease in emotion reactivity. That this effect
was unique to prefrontal REM-gamma was demonstrated by
three additional analyses (Supplemental Results), describing
specificity at the level of (1) topography: the strength of the
predictive relationship between gamma activity and the
change in both amygdala and behavioral reactivity decreased
from anterior to posterior EEG derivations, (2) frequency: no
other frequency band from these same prefrontal EEG
derivations correlated with the change in amygdala activity
or behavioral reactivity, and (3) brain state: unlike REM sleep,
no significant correlation was found between prefrontal
gammapower during non-REM (NREM) sleep and the changes
in emotional responsivity.

Taken together, these findings describe an overnight de-
potentiation of neural (amygdala) and behavioral (subjective)
responsivity to previously encountered affective stimuli [3, 5,
6]. Moreover, the success of this depotentiation was predicted
by REM sleep gamma EEG activity, a surrogate marker in-
dexing central adrenergic activity [7–10]. Our data can be inter-
preted within a recently proposed homeostatic model of REM
sleep involving the reduction of emotional tone originally asso-
ciated with prior waking salient experiences, orchestrated by
the marked reduction in adrenergic activity during REM sleep
[3, 5]. Alternatively, or in addition, such findings may be
explained by the recognized benefit of REM on emotional
memory consolidation [3, 26–28], associated with theta EEG
activity [29, 30], thereby decreasing postsleep stimulus
novelty and hence emotion reactivity. That the changes in
neural and behavioral reactivity reported in the current study
correlated with REM gamma activity and not theta activity
suggests that each component (depotentiation, consolida-
tion), although potential constituents of a broader function of
REM [3], are distinct. Nevertheless, either mechanism inde-
pendently, or their combination, may account for our findings
and represents a future target for experimental investigation.
Guided by recent neurobiological models [3, 5], the current

study focused on sleep-dependent differences in emotion
reactivity within the central nervous system (specifically the
brain). However, these models predict similar downstream
adaptive reductions in reactivity within the peripheral nervous
system. The consequential impact of such altered central
nervous system processing on peripheral nervous system
reactivity has potentially important implications, especially
considering their respective efferent-afferent interactions
known to support symbiotic emotional homeostasis [31].
Translationally, our results may afford mechanistic insights

into a collection of affective disorderswhere amplified emotion



Figure 4. Association between Gamma Power and Emotional Reactivity

(A) Relationship between prefrontal electroencephalographic (EEG) gamma

power (average of Fp1-Fp2 EEG derivations) during rapid-eye movement

(REM) sleep and the extent of overnight decrease in amygdala (blue)

activity from test 1 to test 2 (peak MNI coordinates [x, y, z]; –22, 27, 217;

Z score = 3.55).

(B) Corresponding scatterplot of the amygdala-gamma power relationship

shown in (A), with R2 noted only for descriptive purposes [46, 47], with lower

levels of gamma activity predicting the degree of overnight decrease in

emotional activity.

(C) Topographical Spearman’s correlation (r) plot between gamma power

during REM sleep and the change in emotional reactivity (5-ratings) demon-

strating a significant prefrontal relationship (average of Fp1-Fp2, white

circles).

(D) Corresponding scatterplot and Spearman’s r value: the extent of

reduced gamma EEG activity over prefrontal cortex was proportional to

the overnight decrease in emotional reactivity. *p < 0.05.

Figure 3. Change in Behavioral Reactivity between Test 1 and Test 2 after

a Period of Sleep or Wake

(A) The sleep group expressed a significant linear shift (p < 0.001) and signif-

icant decrease in the most intense emotional ratings (4s, 5s) and increase in

nonemotional ratings.

(B) The wake group showed no significant linear profile shift or decrease in

the most intense emotional ratings. *p < 0.05; error bars represent SEM.
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reactivity and sleep disruption are highly comorbid, particu-
larly the anxiety disorders [1, 2, 4]. Of special relevance in
this context is the condition of post-traumatic stress disorder
(PTSD), characterized by REM abnormalities [11, 32–35],
hyperarousal [36–40], and exaggerated amygdala reactivity
[41–43]. Indeed, the current findings offer a putative neurobio-
logical explanation for the recent pharmacological treatment
success involving nighttime suppression of adrenergic activity
in PTSD, restoring REM sleep features and improving clinical
symptomatology [12, 44, 45].

Supplemental Information

Supplemental Information includes three figures, five tables, Supplemental

Results, and Supplemental Experimental Procedures and can be found with

this article online at doi:10.1016/j.cub.2011.10.052.
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medial prefrontal cortex decreases the responsiveness of central amyg-

dala output neurons. J. Neurosci. 23, 8800–8807.

22. Heidbreder, C.A., and Groenewegen, H.J. (2003). The medial prefrontal

cortex in the rat: evidence for a dorso-ventral distinction based upon

functional and anatomical characteristics. Neurosci. Biobehav. Rev.

27, 555–579.

23. Berridge, C.W., and Waterhouse, B.D. (2003). The locus coeruleus-

noradrenergic system: modulation of behavioral state and state-depen-

dent cognitive processes. Brain Res. Brain Res. Rev. 42, 33–84.

24. Diekhof, E.K., Geier, K., Falkai, P., and Gruber, O. (2011). Fear is only as

deep as the mind allows: a coordinate-based meta-analysis of neuroi-

maging studies on the regulation of negative affect. Neuroimage 58,

275–285.

25. Quirk, G.J., and Beer, J.S. (2006). Prefrontal involvement in the regula-

tion of emotion: convergence of rat and human studies. Curr. Opin.

Neurobiol. 16, 723–727.

26. Wagner, U., Hallschmid, M., Rasch, B., and Born, J. (2006). Brief sleep

after learning keeps emotional memories alive for years. Biol. Psychiatry

60, 788–790.

27. Wagner, U., Gais, S., and Born, J. (2001). Emotional memory formation

is enhanced across sleep intervals with high amounts of rapid eye

movement sleep. Learn. Mem. 8, 112–119.

28. Payne, J.D., Stickgold, R., Swanberg, K., and Kensinger, E.A. (2008).

Sleep preferentially enhances memory for emotional components of

scenes. Psychol. Sci. 19, 781–788.

29. Popa, D., Duvarci, S., Popescu, A.T., Léna, C., and Paré, D. (2010).
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