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Abstract: Research in the neurosciences continues to provide evidence that sleep plays a 
role in the processes of learning and memory. There is less of a consensus, however, 
regarding the precise stages of memory development during which sleep is considered a 
requirement, simply favorable, or not important. This article begins with an overview of 
recent studies regarding sleep and learning, predominantly in the procedural memory 
domain, and is measured against our current understanding of the mechanisms that 
govern memory formation. Based on these considerations, I offer a new neurocognitive 
framework of procedural learning, consisting first of acquisition, followed by two 
specific stages of consolidation, one involving a process of stabilization, the other 
involving enhancement, whereby delayed learning occurs. Psychophysiological evidence 
indicates that initial acquisition does not rely fundamentally on sleep. This also appears to 
be true for the stabilization phase of consolidation, with durable representations, resistant 
to interference, clearly developing in a successful manner during time awake (or just 
time, per se). In contrast, the consolidation stage, resulting in additional/enhanced 
learning in the absence of further rehearsal, does appear to rely on the process of sleep, 
with evidence for specific sleep-stage dependencies across the procedural domain. 
Evaluations at a molecular, cellular and systems level currently offer several sleep 
specific candidates that could play a role in sleep-dependent learning. These include the 
upregulation of select plasticity-associated genes, increased protein synthesis, changes in 
neurotransmitter concentration, and specific electrical events in neuronal networks that 
modulate synaptic potentiation.  
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1. Introduction 

 

The cognitive neuroscience of sleep has undergone a remarkable resurgence in recent 

times. A significant proportion of work has focused on the role of sleep in relation to 

learning and memory. There is now a large body of data describing the dependence of 

certain types of learning on sleep, already complemented by cellular and molecular 

theories (Benington & Frank 2003; Graves et al. 2001; Sejnowski & Destexhe 2000; 

Steriade 1999; Tononi & Cirelli 2001). However, the field remains considerably divided, 

with some supporting and some repudiating the role of sleep in memory consolidation 

(Maquet 2001; Siegel 2001; Smith 2001; Stickgold et al. 2001; Vertes & Eastman 2000). 

As a result, there is still a lack of consensus regarding the precise stage or stages of 

memory development where sleep is considered important or unimportant.  

 

I will begin by discussing the basic characteristics of sleep and memory formation, then 

consider evidence regarding the role of sleep in the process of memory development, 

focusing primarily on procedural learning. Based on these data, I will propose a new 

neurocognitive framework that separates out several discrete stages of memory 

formation, demonstrating the existence of at least two specific forms of consolidation 

following memory acquisition; one of stabilization and one of enhancement. Using this 

new model, we can consider three issues: (1) at what stage of memory formation is sleep 

important? (2) what types of sleep are important? and (3) what are the candidate 

biological mechanisms underlying sleep-dependent learning? By presenting this heuristic 

model, I firstly hope that a more clear understanding of memory stage development can 

be agreed on. Secondly, such discussions may also help move away from an all-or-

nothing contemplation for the role of sleep in memory formation, and instead, shift to a 

more subtle conception of how wake, sleep, and time can all play their parts in acquiring, 

stabilizing, and enhancing memory representations.  

 



 

 3

1.1. Sleep architecture and neurobiology 

 

Human sleep has been broadly classified into two distinct types; non–rapid eye 

movement (NREM) sleep and rapid eye movement (REM) sleep, with NREM sleep 

being further divided into four substages (1–4) corresponding in that order to increasing 

depth of sleep (Rechtschaffen & Kales 1968). REM and NREM sleep alternate across the 

night in an ultradian pattern every 90 minutes, with NREM sleep (particularly stages 3 

and 4) dominating the first half of the night, while REM sleep and stage 2 NREM sleep 

prevail in the latter half of the night (Figure 1).  

 

During the descent into NREM sleep, electroencephalographic (EEG) activity begins to 

slow, with a dominance of theta activity (4–8 Hz) in the early stages. Throughout stage 2 

NREM, there is also the presence of phasic electrical events including K-complexes 

(large electrical sharp waves in the EEG) and sleep spindles (short synchronized EEG 

waveform oscillations in the frequency domain of 7–14 Hz) (Steriade & Amzica 1998). 

Stages 3 and 4 NREM are often grouped together under the term “slow wave sleep” 

(SWS) because of the occurrence of high amplitude waves in the delta range (0.5–4 Hz) 

and below (<1 Hz), an expression of underlying cortical synchrony (Amzica & Steriade 

1995).  

 

With the occurrence of REM sleep, however, EEG oscillations once again become 

desynchronized, together with the emergence of high frequency synchronous activity in 

the 30–80 Hz (“gamma”) range, similar to wake (Llinas & Ribary 1993; Steriade et al. 

1996). Episodic bursts of rapid horizontal eye movement also take place, a defining 

characteristic of REM sleep, while muscle tone decreases significantly compared to both 

NREM sleep and wake (Chase & Morales 1990). There is evidence indicating that rapid 

eye movements, and the process of REM sleep itself, are associated (perhaps causally) 

with the occurrence of phasic endogenous wave forms expressed in the pons (P), 

geniculate nuclei of the thalamus (G), and the occipital cortex (O), and as such, have been 

termed PGO waves (Callaway et al. 1987). 
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The changes in brain electrical activity across different REM and NREM sleep stages are 

accompanied by distinct patterns of functional anatomy. During NREM SWS, rostral 

brain stem regions, thalamic nuclei, basal ganglia, prefrontal and cingulate cortices, 

together with medial regions of the temporal lobe all show decreased activity relative to 

waking (Braun et al. 1997; Maquet et al. 1996). In contrast, during REM sleep, 

significant elevations in activity are seen in the pontine tegmentum, thalamic nuclei, 

occipital cortex, mediobasal prefrontal lobes, and limbic regions including the amygdala, 

hippocampus, and anterior cingulate cortex relative to waking and NREM SWS (Braun et 

al. 1997; 1998; Maquet et al. 1996; Nofzinger et al. 1997). At the same time, the 

dorsolateral prefrontal cortex, posterior cingulate, and parietal cortex show even greater 

decreases in activity during REM sleep compared with both NREM and waking (Braun et 

al. 1997; Maquet et al. 1996) 

 

Throughout the respective sleep stages, the brain also undergoes dramatic alterations in 

neurochemistry. In NREM sleep, subcortical cholinergic systems in the brain stem and 

forebrain become markedly less active (Hobson et al. 1975; Lydic & Baghdoyan 1988) 

while firing rates of serotonergic raphé neurons and noradrenergic locus coeruleus 

neurons are also reduced relative to waking levels (Aston-Jones & Bloom 1981; Shima et 

al. 1986). During REM sleep, both these aminergic populations are strongly inhibited 

while cholinergic systems become as active or more active compared with wake 

(Kametani & Kawamura 1990; Marrosu et al. 1995), resulting in a brain state largely 

devoid of aminergic modulation and dominated by acetylcholine. A summary of these 

physiological sleep characteristics is presented in Figure 1. 
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Figure 1. The sleep cycle and respective biological properties.  
 
Across the night, NREM and REM sleep cycle every 90 minutes in an ultradian manner, although 
the ratio of NREM to REM sleep shifts so that early in the night stages 3 and 4 of NREM 
dominate, while stage 2 NREM and REM sleep prevail in the last half of the night. EEG patterns 
also differ significantly between sleep stages, with electrical oscillations such as k-complexes and 
sleep spindles occurring during stage 2 NREM, and slow delta waves developing in NREM SWS 
(slow wave sleep). Synchronized electrical events are also proposed in REM sleep, expressed in 
the pons (P), geniculate nuclei of the thalamus (G), and the occipital cortex (O), termed PGO 
waves. In addition, significant changes in neurochemistry take place across the sleep cycle. 
Relative to the wake state, activity of aminergic and cholinergic neurons is reduced during 
NREM. During REM sleep, aminergic activity continues to fall, while activity of cholinergic 
neurons now returns to similar levels observed during the wake state. The functional anatomy of 
sleep is also nonhomogeneous, with NREM SWS exhibiting marked deceases in activity 
throughout subcortical regions important for arousal as well as regions of the limbic system. 
However, in REM sleep, areas of the occipital and medial frontal cortices increase in their 
activity, together with the anterior cingulate and temporal lobe structures, while lateral regions of 
the prefrontal lobe undergo continued decrease in activation. 
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2. The time course of learning and the contributions of different brain states 

 
2.1. Memory systems in the brain 

 

The process of acquiring information (such as facts, experiences, actions, skills, etc.) and 

modifying that knowledge over time can be considered the process of memory formation, 

expressed behaviorally as learning. Once developed, the size of the mammalian cerebral 

cortex is largely fixed, placing anatomical and functional limitations on information 

storage (Kass 2000). Therefore, to maintain the ability for continued memory formation, 

the adult cortex must, by necessity, continually modify its central representations in a 

dynamic balancing act to ensure that the most salient information is retained and 

available in the organisms behavioral repertoire.  

 

A widely accepted mechanism of memory formation is brain “plasticity,” a lasting 

change in neuronal properties (such as structure or function) in response to a stimulus 

(such as an experience). There now exists an abundance of mechanisms that can provide 

the foundation of brain plasticity, ranging from the reorganization of cortical networks at 

a macroscopic level, to the disinhibition of existing circuitry, the modification of synaptic 

strengths, and the structural remodeling of synaptic connections at a microscopic level 

(Buonomano & Merzenich 1998; Martin et al. 2000; Pascual-Leone 2001). 

 

While several theories have offered common underlying mechanisms of memory, it is 

important to note that memory is not a single entity, at least not in humans. Human 

memory has been subject to several different classifications, many of which include 

discrete neuroanatomical regions. The most popular of these taxonomies is based on the 

distinction of declarative versus nondeclarative memory (for review see Squire & Zola 

1996). 

 

Declarative memory may be considered as the conscious memory for fact-based 

information (i.e., knowing “what”), and is usually acquired with relatively few exposures 
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to the information, such as just one or two readings of a text, or one exposure to an event. 

Several subcategories of the declarative system exist, including episodic memory 

(memory for events of one's past) and semantic memory (memory for general knowledge, 

not tied to a specific event) (Tulving 1972). Current neural models of declarative memory 

formation emphasize the critical importance of structures in the medial temporal lobe, 

including the hippocampus (Eichenbaum 2000), which is thought to form a temporally 

ordered retrieval code for neocortically stored information. 

 

In contrast, non-declarative memory can be regarded as non conscious. The non-

declarative category includes procedural memory (i.e., the knowing “how”), such as the 

learning of actions, habits, and skills, as well as implicit learning, which is characterized 

as a passive process involving the acquisition of knowledge simply through exposure 

(Dienes & Perner 1999). Procedural learning of perceptual and motor skills often requires 

longer periods of acquisition compared to declarative memory, and is usually achieved 

through periods of performance repetition. The neural structures involved in procedural 

learning are diverse, involving both cortical and subcortical networks. While different 

perceptual-motor skills may share some anatomical commonalities, the networks 

modulating specific kinds of procedural learning are often defined by the sensory (input) 

and motor (output) demands of the task (e.g., Grafton et al. 1998; Jancke et al. 2001; 

Karni et al. 1995; Schwartz et al. 2002). 

 

2.2. The current status of sleep, learning, and memory 

 

The idea that sleep may participate in the process of learning and memory formation is 

not new. Some of the earliest evidence was provided by researchers such as David 

Hartley (1801) and Jenkins and Dallenback (1924) indicating that the strength of a 

memory representation (“trace”) maybe more preserved by periods of sleep compared 

with equivalent periods of time awake. Following the discovery of discrete sleep stages 

(Aserinsky & Kleitman 1953), research investigating the influence of sleep on memory 

has become gradually more complex at both a behavioral and mechanistic level.  
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Studies using animal models have provided evidence for the role of sleep in primarily 

hippocampal dependent tasks; although these cannot be classed as declarative since no 

“declaration” as such can be made. Learning of spatial tasks and avoidance paradigms 

during waking have been shown to trigger alterations in proceeding sleep stage 

characteristics, relative to sleep periods without prior learning (Ambrosini et al. 1992; 

Datta 2000; Hennevin & Hars 1987; Mandile et al. 2000; Smith et al. 1980). Furthermore, 

sleep deprivation following task acquisition can result in learning impairments at future 

retests (Beaulieu & Godbout 2000; Fishbein et al. 1974; Hennevin & Hars 1987; Marti-

Nicolovius et al. 1988; Oniani et al. 1987; Pearlman 1969; Shiromani et al. 1979; Smith 

& Kelly 1988; Smith & Lapp 1986). It is important to note, however, that a proportion of 

this early animal literature has been criticized for its lack of control regarding the 

confounds of sleep deprivation (Siegel 2001; Vertes & Eastman 2000). More recently, 

however, refined experiments have also demonstrated that selective deprivation of 

specific sleep stages, and even specific sleep-stage time windows, can cause significant 

deficits in memory consolidation (Smith & Butler 1982), as opposed to long durations of 

deprivation which may cause nonspecific effects on memory recall. 

 

The majority of early work investigating sleep and learning in humans focused on 

classical tests of declarative memory (for detailed review see Peigneux et al. 2001a; 

Smith 2001). These findings offered mixed and contradictory conclusions, some in 

support of sleep-associated learning; others starkly against any role for sleep in memory 

formation. For example, Meienberg et al. (1977) found no evidence of altered 

posttraining sleep architecture following learning of a verbal memory task. However, De 

Koninck et al. (1989) demonstrated significant increases in posttraining REM sleep after 

intensive learning of a foreign language, with the degree of successful learning 

correlating with the percentage increase of REM sleep. Similar inconsistencies have been 

reported in the degree to which intensive learning experiences during wake can alter 

subsequent sleep-stage properties, as well as the learning impairments that follow 

selective sleep deprivation (Chernik 1972; Empson & Clarke 1970; Lewin & Glaubman 

1975; Meienberg 1977; Plihal & Born 1997; Zimmerman et al. 1970; 1978).  
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This lack of agreement between studies may reflect inappropriate retest schedules. 

Alternatively, it may be a consequence of the significant differences in task 

characteristics, such as the degree of experimental difficulty (Empson & Clarke 1970; 

Tilley & Empson 1978), or the emotional salience of the test (Wagner et al. 2001), each 

of which may drive sleep dependency. An examination of different declarative memory 

categories, including episodic and semantic forms has also not been fully investigated 

(Cipolli & Salzarulo 1980), and may add further to the apparent contradictions in the 

degree to which sleep is or is not important. 

 

It is also possible that the effects of sleep on declarative memory are more protracted, 

making the identification of sleep-dependent learning more difficult to measure. For 

example, the influence of sleep on declarative memory could be one of subtle 

maintenance, preventing decay over time. Therefore, retesting memory several days or 

weeks following sleep deprivation, rather than the next day, could prove a more 

informative measure of long-term retention. However, Smith et al. have tested subjects’ 

retention for declarative material one week after first-night selective or total sleep 

deprivation following encoding (Smith 1995), still reporting no evidence of impairment. 

 

Regardless of the reasons, a clear understanding of the role of sleep in declarative 

memory formation remains to be established in humans, and represents a significant 

challenge to researchers in the field of sleep and memory.  

 

In contrast to the declarative system, evidence for the reliance of procedural memory on 

sleep in humans has been incredibly robust, and currently offers the most promising and 

informative model of sleep-dependent learning (Buchegger & Meier-Koll 1988; Fischer 

et al. 2002; Gais et al. 2000; Karni et al. 1994; Smith & MacNeill 1994; Stickgold et al. 

2000a; 2000b; Walker et al. 2002, 2003b). In the light of this consistency, we will now 

focus on recent advances in understanding the specific stages of procedural memory 

development, and discuss the differing contributions that time, wake, and sleep offer. 
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2.3. Behavioral stages of procedural memory formation: a contemporary model 

 

Memory formation does not transpire as a solitary event, but instead evolves in several 

discrete stages (McGaugh 2000; Schacter & Tulving 1994). Classically, the process of 

memory formation is considered to develop in a time-dependent manner, resulting in a 

more permanent memory representation.  

 

The time course of behavioral modification, and changes in brain plasticity, also appear 

to be diverse, with rapid changes on the order of seconds to minutes taking place during 

or soon after an experience; while more delayed changes can occur in the subsequent 

hours or days after that event (e.g. Igaz et al. 2002; Karni et al. 1998). In some cases, this 

latent phase of plasticity has been suggested to occur across weeks, but it may simply 

reflect the continued cycling of a process occurring across several hours or days, with 

repeated exposure to the specific experience in-between. Two of the most recognized 

stages of memory formation are the initial acquisition phase, followed by a consolidation 

phase. 

 

2.3.1. Acquisition: Behavioral time course and brain-state dependence. In the 

procedural memory domain, acquisition can be measured by a specified performance 

level within an exposure period or a practice session. This usually requires a training 

interval involving repeated engagement with the procedure being learned (Rattoni & 

Escobar 2000). Training for procedural skills generally requires time periods ranging 

from several minutes to several hours. Rarely does engagement last longer since practice 

benefits will often asymptote, although this does not mean the capacity for learning has 

ended. Continued practice can not only render little additional improvement, because of 

system fatigue or decreased motivation and attention, but can even result in decreased 

performance, the effects of which can be reduced by brief periods of daytime sleep 

(Mednick et al. 2002). In general, acquisition itself involves learning, since behavioral 

performance often improves across the session, and by definition, successful acquisition 

corresponds to achieving a certain level of task proficiency. 

 



 

 11

2.3.1.1. Mechanisms of acquisition and its brain-state dependency. Rapid learning 

within brief training sessions, or shortly after, is presumably too fast for extensive 

structural change involving the synthesis of new proteins, and the formation of new 

synapses. Instead, a common mechanism underlying acquisition may be the disinhibition, 

or “unmasking,” of already existing cortical connections. Using regional blockade of 

GABAergic inhibition, Jacobs and Donoghue (1991) have demonstrated the ability to 

rapidly disinhibit latent horizontal connections in the motor cortex, connections that are 

suppressed by feed-forward inhibition. Comparable effects have been described in 

humans using centrally acting pharmacology targeting GABAA receptors (Butefisch et al. 

2000). Similar mechanisms of early learning involving the rapid alteration of intra-

cortical horizontal connections have been proposed in the visual (Gilbert & Wiesel 1989; 

Trachtenberg & Stryker 2001), auditory (Buonomano & Merzenich 1998; Wang et al. 

2000), and somatosensory cortices (Micheva & Beaulieu 1995). Such rapid removal of 

local inhibition would allow the fine turning of existing networks, and may explain the 

short-term functional and electrophysiological changes revealed at a systems level during 

acquisition (Müller et al. 2002; Naatanen et al.1993). At a molecular level, there is 

evidence that these early stages of memory formation result in the “tagging” of activity-

dependent synapses (Frey & Morris 1998). As a consequence, these synaptic tags are 

thought to act as request signals for plasticity-related proteins that become available 

several hours later, meaning that only selective synaptic connections are facilitated over 

the long-term. 

 

Regarding the brain-state dependency of memory acquisition, the majority of studies 

indicate that wake, rather than sleep, is most preferable, being a time of focused 

perceptual attention to external stimuli (Joseph et al. 1997), and the ability for conscious, 

driven motor output (e.g. Brashers-Krug et al. 1996; Karni et al. 1998; Muellbacher et al. 

2002; Shadmehr & Brashers-Krug 1997). Evolutionarily, this trait for rapid improvement 

during the waking repetition of a new skill makes considerable sense, particularly if it 

were a beneficial procedure. It would not seem logical to have a system that requires 

hours or days, or periods of sleep, before the first signs of improvement emerge.  
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Nevertheless, this is not to say information cannot be assimilated in such a way during 

sleep (for recent review see Coenen & Drinkenburg 2002). Hennevin and colleagues have 

demonstrated that new associations can be formed when information is presented during 

REM sleep in rats. Furthermore, the influence of this REM sleep experience can be 

identified in subsequent waking behavior (Hennevin et al. 1995). At the human level, 

Cheour et al. (2002) have described electrophysiological evidence that human newborns 

are able to acquire the ability to discrimination between simple vowel sounds throughout 

all stages of sleep. Information not only appears to be accessible to the brain during sleep, 

but may be preferentially dealt with. For example, Portas et al. (2000) have provided 

neuroimaging data to suggest that emotionally salient auditory information (the subject’s 

own name) is differentially processed at a higher cortical level relative to a beep tone 

during NREM sleep. In addition, the emotionally salient stimulus was processed in a 

functionally different manner in NREM sleep compared to perception of the same 

stimulus during wake.  

 

Continued acquisition and further modification of information learned during prior 

waking also appears to be possible during sleep. Several studies (Guerrien et al. 1989; 

Smith & Weeden 1990) have demonstrated that auditory learning during waking can be 

further modified by presentation of similar auditory cues during phasic REM sleep 

periods (REM sleep epochs with eye movements), leading to improved waking 

performance. No such learning occurred during episodes of tonic REM (REM sleep 

epochs without eye movements).  

 

Although intriguing, there would seem to be little advantage offered by the sleep state 

compared with wake for the acquisition of information, apart from perhaps a reduction in 

the number of competing stimuli likely to occur. Furthermore, just because acquisition 

can take place during sleep does not necessarily mean sleep serves that purpose. This 

would also seem to be the most parsimonious explanation, considering that most species 

seek a sleep location based not only on its degree of safety but its reduced degree of 

sensory stimulation, dramatically decreasing the amount of information available for 

learning.  
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2.3.2. Consolidation: Behavioral time course and brain-state dependence. The 

early changes in both behavior and neural dynamics during acquisition are often fragile 

and vulnerable to interference. Additional changes are required before the newly formed 

memory becomes more permanent. Following acquisition of a procedural skill, it is 

widely accepted that a specific map of that information, or representation, is formed 

within the brain. This representation appears to undergo several stages of modification, 

although classifying these stages can be problematic depending on the tool of 

measurement, for example, behavioral, neurophysiological, molecular, and so on.  

 

On successful completion of acquisition, a slowly developing process, termed 

consolidation, is believed to evolve. Classically, consolidation has referred to a process 

whereby a newly formed memory becomes increasingly less susceptible to interference 

from a variety of amnesic agents such as trauma or experimental interventions such as 

electroconvulsive shock (for recent review see McGaugh 2000). Indeed it is the degree of 

stability or resistance to interference that is usually taken as the defining measure of 

successful consolidation.  

 

Until recently, the process of consolidation was considered to evolve with the simple 

passage of time, albeit requiring many underlying biological mechanisms (Figure 2A). 

However, several new studies suggest that consolidation of procedural memory is not 

simply determined by time per se, but instead, is more strictly determined by time spent 

in specific brain states such as wake or sleep, or even certain stages of sleep (Brashers-

Krug et al. 1996; Fischer et al. 2002; Gais et al. 2000; Karni et al. 1994; Muellbacher et 

al. 2002; Shadmehr & Brashers-Krug 1997; Stickgold et al. 2000a; 2000b; Walker et al. 

2002; 2003b). Yet this premise rests critically on one issue: the definition of 

consolidation. Based on new psychophysical data, I propose here that consolidation in the 

procedural domain can be separated into at least two different behavioral (and possibly 

mechanistic) stages (1) Consolidation-based stabilization (CBS) and, (2) Consolidation-

based enhancement (CBE). This contemporary model is outlined in Figure 2B. 

Previously, the concept of consolidation as stabilization or enhancement has been 
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suggested in an “and/or” proposition (Abel & Lattal 2001; Hoffman & McNaughton 

2002), but a clear separation has never been outlined. As will be discussed, not only does 

this definition offer a new behavioral framework of procedural memory formation, it can 

help in dissociating wake or time-dependent learning from sleep-dependent learning. 

 

 
 

 
Figure 2. Classical and new models of procedural memory stage formation 
  
(A) Classical, time-dependent course of memory formation: The process of memory formation 
begins with an acquisition stage involving engagement with an experience or task to be learned, 
resulting in a specific memory representation in the brain. By the end of this experience or shortly 
after, an additional stage of consolidation evolves in a time-dependent, but not brain-state–
dependent manner. Following the passage of a specific time period, information learned during 
acquisition is now retained in a more permanent form. 
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(B) Contemporary brain-state–dependent course of memory formation: In this alternative model, 
the process again starts with an acquisition stage requiring a period of exposure to the task or 
experience. Following or during acquisition, another time-dependent (but not sleep-dependent) 
mechanism occurs, involving a process of consolidation-based stabilization. As a result, the 
memory representation is now resistant to interference, while behavioral performance (learning) 
is maintained, but not improved. However, only during periods of sleep can the additional process 
of consolidation-based enhancement, a brain-state–dependent process, take place, regardless of 
whether this is immediately after acquisition (i), or several hours later (ii & iii). As a 
consequence, behavioral performance indicates additional learning over and above that achieved 
during acquisition.  
 

 

2.3.2.1. Consolidation-based stabilization. As noted, consolidation has historically been 

considered the conversion of a memory representation from an initially labile state to a 

more stable form, allowing information to be retained after a set period of time. Although 

a specific representation may have become resistant to disrupting or competing factors, 

this process is one of maintenance only, simply permitting the same expression of 

performance level to that accomplished during acquisition, no more.  

 

There are now several studies demonstrating that a process of consolidation-based 

stabilization (CBS) can be effectively achieved during periods of wake, without requiring 

sleep. Using procedural visual and motor skill tasks, Stickgold et al. (2000b) and Walker 

et al. (2002; 2003b) have outlined the time course of behavioral improvement across 

subsequent periods of wake (and sleep; see below) following task acquisition. In these 

studies, time periods of 3–12 hours of intervening wake offered no improvement in 

skilled behavioral performance level on either task, only maintenance. Although not 

specifically testing memory stability by way of interference probes, these examples first 

indicate the preservation of learning across periods of wake without decrement, and 

second demonstrate the lack of any additional learning attributable to the passage of 

waking time.  

 

Muellbacher et al. (2002) have directly addressed the question of stabilization in the 

human brain across periods of wake using a skilled motor task. Brief periods of practice 

on the task produced considerable gains in performance during the training session. 

Following a 15 minute rest period, subjects showed retention of that same performance 
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level at retesting. A second group of subjects experienced an identical training session, 

but during the intervening 15 minute rest, underwent repetitive transcranial magnetic 

stimulation (rTMS) applied to the primary motor cortex; this is a technique that can 

interfere with local neural activity. In contrast to the first group of subjects, when retested 

15 minutes later, performance had decreased back to pretraining values, suggesting that 

rTMS had interfered with maintenance of the motor memory. A third group of subjects 

were also trained on the task, but instead of receiving rTMS to the motor cortex 

immediately after training, received rTMS after a prolonged 6 hour waking time period. 

Despite being applied in the same location, when retested after this 6 hour period, rTMS 

now had no interference effect, with performance levels again being maintained relative 

to the end of training. Therefore, a process of stabilization had occurred sometime 

between 15 minutes and 6 hours following the end of training, and as a result, the 

memory representation was no longer susceptible to the interference effects of rTMS. It is 

important to note, however, that neither 15 minutes nor 6 hours of time awake could offer 

any additional learning benefit relative to the end of training, only stability and thus 

maintenance of performance.  

 

An equally clear dissection of the stabilization process has been demonstrated by 

Shadmehr and colleagues. In the second of several experiments (see below), subjects 

were trained on a skilled reaching task during functional imaging of the brain (Shadmehr 

& Brashers-Krug 1997). When retested after 6 hours of wake (a period that had 

previously been shown to be necessary for stabilization) (Brashers-Krug et al. 1996), 

behavioral performance was again maintained, but not improved, relative to performance 

levels during acquisition. In contrast to the lack of change in behavior, a significantly 

different pattern of regional brain activation had developed, with greater recruitment of 

premotor, parietal, and cerebellar regions after 6 hours. These data indicate that the 

functional stability offered by the passage of time awake was associated with a change in 

the neural representation of this skill.  

 

Collectively, this evidence suggests that periods of wake can successfully provide a time-

dependent stabilization process in the first 6 hours after acquiring certain procedural 
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skills. Nevertheless, while the time awake is clearly not amnesic in and of itself, it does 

not offer the ability for any additional learning to occur, independent of rehearsal.  

 

2.3.2.2. Consolidation-based enhancement. In the current model, the process of 

consolidation-based enhancement (CBE) posits that a specific representation is not only 

more stable and impervious to interference, but is now further enhanced following a night 

of sleep. As a consequence, behavioral performance indicates that additional learning has 

taken place in the absence of any further rehearsal or experience. Several studies have 

now established data indicative of CBE, and each example has taken place across a time 

period containing a night of sleep, some of which explicitly determine sleep as the causal 

trigger.  

 

As discussed above, a study by Shadmere et al. (Shadmehr & Brashers-Krug 1997) 

illustrated that 6 hours after the end of training on a skilled motor reaching task, subjects’ 

behavioral performance was not changed, but the pattern of functional activity observed 

using brain imaging was significantly different. In a prior study using the same task, 

Shadmere and colleagues (Brashers-Krug et al. 1996) demonstrated that the first 4 hours 

following training represented a susceptible time to interference from competing 

behavioral movements, but that after this critical time window had passed, performance 

could not be altered by such competition. That is to say stabilization had been achieved, 

similar to the study of Muellbacher and colleagues. However, instead of being retested 

after 6 hours (Shadmehr & Brashers-Krug 1997), or following interference (Brashers-

Krug et al. 1996), a separate group of subjects were simply retested 24 hours after 

training without any interference challenges (Brashers-Krug et al. 1996). Following this 

intervening time, containing a night of sleep, subjects now displayed additional learning 

relative to initial training, instead of simply maintaining performance levels, as was the 

case after 6 hours of waking. Similar evidence of delayed learning across 24 hours 

following training has been shown using a skilled hand-cursor apparatus (Krakauer et al. 

1999) and a sequential finger-tapping task (Karni et al. 1998).  
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Thus improvement or enhancement of certain motor skills continues for at least 24 hours 

following training, yet the relative contributions of time spent awake and asleep were still 

not clear. Walker and colleagues recently addressed this question (Walker et al. 2002; 

2003b), again using a sequential finger-tapping motor task (Figure 3). In their initial 

study, subjects were trained either at 10:00 a.m. or 10:00 p.m. and then retested at 

subsequent intervals across 24 hours. Initial practice on the motor skill task improved 

performance by nearly 60% within the training session for all groups equally, regardless 

of time of day. However, subjects went on to demonstrate remarkably different time 

courses of subsequent motor skill improvement, specifically dependent on sleep. Subjects 

trained at 10:00 a.m. showed no significant improvement when retested later that same 

day at 10:00 p.m., after 12 hours of wake (Figure 3, A & B). Yet when retested a second 

time at 10:00 a.m. the next morning, following a night of sleep, subjects now showed an 

average 20% improvement in speed and a 39% improvement in accuracy. Subjects 

trained at 10:00 p.m. demonstrated equally large significant improvements at 10:00 a.m. 

the next morning in both speed and accuracy, just 12 hours post training, following sleep, 

but showed no significant additional improvement after a further 12 hours of wake at 

10:00 p.m. later that day (Figure 3, C & D). An alternative explanation of these results 

was that motor activity during the wake period prevented motor skill consolidation, and 

sleep was therefore simply a passive time of hand-rest allowing enhancement. To 

eliminate this possibility, an additional group of subjects were trained at 10:00 a.m. and 

then wore mittens for the duration of the waking interval to prevent skilled finger 

movements before being retested at 10:00 p.m. Yet again, the waking episode, with total 

hand rest during the day, resulted in no significant improvement in performance, and 

actually led to an increase in errors, while large improvements were again seen after the 

night of sleep. 

 

Significant delayed improvement was therefore seen only across a night of sleep and not 

over an equivalent period of wake, regardless of whether the time awake or time asleep 

came first. Furthermore, when the degree of overnight improvement in motor skill speed 

was correlated with sleep-stage recordings, a significant positive correlation with the 

percentage of stage 2 NREM sleep was evident, particularly late in the night, further 
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implicating sleep in the observed learning effect. Fischer et al. (2002) have recently 

confirmed these findings, with the additional evidence that sleep on the first night 

following training is critical for these delayed improvements to develop, and that sleep 

during the day triggers similar performance gains to those achieved following nocturnal 

sleep. However, these authors reported a correlation with REM sleep and not stage 2 

NREM. 
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Figure 3. Sleep-dependent learning on a motor skill task 
  
(A & B) Subjects in the Wake 1st group (n=15), trained at 10:00 a.m., showed no significant 
change in either speed (A) or error rate (B) at the first retest following 12 hours of wake (Retest 1, 
filled bars). However, by the second retest, following a night of sleep (retest-2, filled hatched 
bars), performance improved significantly, with speed increasing by 19% and error rate 
decreasing by 39%.  
 
(C & D) In contrast, subjects in the Sleep 1st group (n=15), trained in the evening (filled bars), 
immediately showed significant improvements in (C) speed (+20%), and (D) error rate (-36%), 
just 12 hours after training following a night of sleep (retest-1, filled hatched bars). Subjects 
displayed no further significant change in speed or error rate with an additional 12 hr of wake 
(Retest 2, filled hatched bars). (Modified from Walker et al. 2002; 2003b.) 
 
Asterisks represent degree of significance. 
 
* = P <0.1 
**= P <0.05 
***= P<0.005 
 
Error Bars = SEM 
 

 

 

In the second of their studies, Walker et al. (2003b) have gone on to investigate the 

temporal evolution of motor learning before and after sleep, the effects of different 

training regimens, and the long-term development of motor learning across multiple 

nights of sleep. These data demonstrate that overnight, sleep-dependent learning alters 

the capacity for rehearsal-based improvement during subsequent waking episodes, so that 

prior to a night of sleep, practice continues to trigger small, within-session performance 

benefits, but following sleep, this capacity is diminished. Secondly, doubling the duration 

of training does not appear to alter the amount of subsequent sleep-dependent learning. 

Thirdly, the amount of practice-dependent learning during training does not correlate 

with the amount of subsequent sleep-dependent learning, suggesting that these two stages 

(initial acquisition and the later sleep-dependent enhancement) are functionally distinct 

and regulated by different mechanisms. Finally, while the majority of sleep-dependent 

motor skill learning appears to occur during the first night of sleep, additional nights of 

sleep still offer continued improvements over time.  
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This pattern of sleep-dependent learning is not solely restricted to the motor system. In 

the perceptual domain, Karni et al. (1994) have demonstrated that learning on a visual 

texture discrimination task, which has been shown not to benefit from periods of 4–12 

hours of wake following acquisition (Stickgold et al. 2000b), improves significantly 

following a night of sleep. Furthermore, Karni et al. (1994) established that selective 

disruption of REM, but not NREM sleep, results in a loss of this performance gain. Using 

the same task, Stickgold et al. (2000a) have shown that these delayed performance 

benefits are absolutely dependent on the first night of sleep following acquisition (Figure 

4), and that the sleep-dependent gains are correlated positively with the amount of SWS 

early in the night, as well as the amount of REM sleep late in the night (Stickgold et al. 

2000b). Also following training on this same visual skill task, Gais et al. (2000) have 

selectively deprived subjects of sleep early in the night (dominated by SWS), and sleep 

late in the night (dominated by REM and stage 2 NREM), inferring that consolidation is 

triggered by SWS related processes, while REM sleep may promote additional 

consolidation, only after periods of SWS sleep have occurred.  

 

Although the original report of these effects demonstrated that most subjects required a 

night of sleep before the delayed learning was expressed (Karni & Sagi 1993), it should 

be noted that two out of nine subjects did display some improvement without a night of 

sleep, some 8 hours later. However, subsequent studies using this task have not been able 

to find evidence of delayed learning during wake (Stickgold et al. 2000b).  

 

While the sleep-dependency of this visual task is now well established, the neural 

correlates are still relatively uninvestigated. Using functional MRI (fMRI) in humans, 

Schwartz et al. (2002) have recently measured brain activity 24 hours after training on the 

visual discrimination task. At the 24-hour retest, greater activation was observed in the 

retinotopic area of V1 corresponding to the trained visual field. However, these data were 

unable to determine whether this enhanced activity was present immediately at the end of 

training before sleep, or developed during the sleep period.  
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Figure 4. Sleep-dependent learning of a visual discrimination task  
 
Subjects were trained and then retested at a later time, with the respective improvement (in 
milliseconds) in performance illustrated across time. Each subject was retested only once, and 
each point represents a separate group of subjects.  
 
(A) Wake 1st: Subjects were trained and then retested either 3, 6, 9, or 12 hours later on the same 
day (open circles) without any intervening sleep. No significant improvement was evident as a 
consequence of the passage of waking time across at any of the four time points.  
 
(B) Sleep 1st: Subjects were trained and then retested 8, 12, 15, or 23 hours after a night’s sleep 
(filled circles), with a significant improvement occurring as a consequence of sleep.  
In total, n=57, with n=7–9 for individual points. (Modified from Stickgold et al. 2000b.) 
 
Asterisks represent individual groups showing significant improvement at P <0.001.  
 
Error Bars = SEM 
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Maquet et al. (2003) have also demonstrated evidence of sleep-dependent enhancement 

using a procedural visuomotor task in combination with fMRI. Subjects were trained on 

the task and subsequently retested three days later. Half of the subjects were deprived of 

sleep the first night following training, and then allowed two subsequent recovery nights 

of sleep before being retested. The remaining half of the subjects slept all three nights. 

Relative to the sleep-deprived group, subjects who slept all three nights showed both 

enhanced behavioral performance and a selective increase in activation in the superior 

temporal sulcus at the later retest, while subjects deprived of the sleep the first night 

showed no such change. These results are also in accordance with previous data by Smith 

and MacNeill (1994), demonstrating that selective late night sleep deprivation, 

particularly related to the loss of stage 2 NREM, can impair retention of a similar visuo-

motor task. 

 

Curiously, Eysenck and Frith (1977) have shown that, following practice on a visuomotor 

task, very brief periods of rest (e.g. 5–15 minutes) also result in performance 

enhancements relative to posttraining values without the need for sleep, an effect termed 

reminiscence. However, this rest-induced enhancement can be short lived, decreasing 

back to posttraining values if retesting continues for several minutes (Denny 1951). The 

effect of reminiscence has been considered as a form of consolidation, although 

alternative suggestions posit that these improvements more accurately reflect the relief of 

inhibitory factors that build up across training. The latter hypothesis would seem to 

explain why sustained retesting following the rest period quickly returns performance 

back to posttraining levels, arguing against instantiation of permanent learning. Of note 

for the current theory, there is evidence that a 24-hour rest period following training on 

this task (presumably containing sleep), in contrast to a 10-minute rest period, similarly 

enhances performance relative to the end of practice, but these improvements are instead 

sustainable across continued retesting, without any rapid decline over time (Holland 

1963). A longer rest period, containing a night of sleep, may therefore confer a true 
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enhancing effect, more reflective of consolidation, rather than a temporary relief of 

practice-induced inhibition.  

 

While the majority of research investigating the effects of sleep on procedural learning 

has so far focused on visual and motor systems, pioneering work by Atienza and 

colleagues have also described evidence of both time- and sleep-dependent memory 

development in the auditory domain (Atienza et al. 2002; 2003), suggesting that the 

influence of sleep maybe ubiquitous throughout perceptual sensory and motor domains.  

 

Together, these studies show that within the procedural memory system, a process of 

continued (sustainable) learning can occur after training has stopped, but that this process 

of CBE develops only during intervening periods of sleep and not during wake.  

 

The dependence on REM and SWS for the visual skill task is in contrast to the stage 2 

NREM relationship identified in the motor domain. Such a difference may have several 

possible explanations. First, the degree of task complexity may be a determining factor 

(Tweed et al. 1999), with more complex skilled tasks showing a greater sensitivity to 

REM sleep deprivation, while relatively simple tasks appear more sensitive to stage 2 

NREM deprivation. Second, within the procedural domain, different sleep-stage 

dependencies may reflect distinctions between the input (sensory/perceptual) and output 

(motor) roles of these systems, each of which could require functionally different brain 

states for effective consolidation. Indeed, if memory development is one of the many 

functions that sleep serves, it would seem careless not to exploit these multiple stages. 

After all, evolution has fought vehemently to preserve each of these physiologically 

distinct brain states, an accomplishment that has required both considerable effort and 

mechanistic complexity. If there are several different memory systems in the brain, why 

utilize only one sleep stage, such as REM? Instead, the reliance of subtly different forms 

of memory on different stages of sleep appears to make biologically efficient sense.  
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Figure 5. Procedural memory stages and the contributions of time, wake, and sleep in behavioral 
improvement 
 
The initial stage of memory formation begins with acquisition (AQ), a process that occurs most 
commonly during waking, resulting in early behavioral improvement (learning). 
 
Following acquisition, a process of consolidation-based stabilization (CBS) evolves in a time-
dependent manner across 0–6 hours, developing efficiently during periods of being awake. As a 
consequence, the memory representation becomes more resistant to interference, but there is no 
further learning relative to the end of acquisition. 
 
Following CBS, a process of consolidation-based enhancement (CBE) ensues. This stage of 
consolidation offers additional learning in the absence of further practice, and explicitly requires 
episodes of intervening sleep. Ancillary memory stages such as integration or reconsolidation 
following memory reactivation may take place either during (in parallel) or following (serial) 
CBS or CBE, but these additional processes (AP) are less well understood, as are the 
time/wake/sleep contributions. 
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In summary, the available evidence demonstrates the existence of two discrete stages of 

consolidation in the procedural memory system. The first is a process of stabilization, 

resulting in the maintenance of performance level, but without further learning. This 

stabilization process can occur effectively in a time-dependent manner across waking 

episodes without requiring sleep. The second process of enhanced learning involves 

further modification of the memory representation, resulting in additional performance 

gains rather than simple maintenance. This process does appear to depend on sleep. A 

model of the dynamics between time, wake, and sleep and different memory stages is 

outlined in Figure 5. 

 

2.3.3. The relationship to previous models of sleep and memory. Several models of 

memory development that consider either time or sleep have previous been offered 

(Buzsaki 1998; Giuditta et al. 1995; Hasselmo 1999; Karni et al. 1998; Smith 2001; 

Stickgold 1998). As discussed below, the model presented here is consistent with several 

features of these aforementioned ideas. It also introduces several new concepts by which 

we are able to dissect behavioral different stages of memory and relate their dependencies 

to discrete brain states and time courses, the evidence for which, until recently, has not 

been available.  

 

Advancing an earlier framework of Buzsaki (1998), Hasselmo (1999) has proposed a 

two-stage model of hippocampal episodic memory transfer based on opposing levels of 

acetylcholine (ACh) during wake and slow wave sleep. During wake, hippocampal levels 

of ACh are high, promoting a dominate flow of information into the hippocampus from 

the neocortex – ideal conditions for memory encoding. Then, during subsequent SWS, 

when ACh concentrations are low, this directional flow is reversed, and although the 

newly established hippocampal connections remain, novel associative connections are 

now established out in the neocortex. This alternating pattern of information flow during 

wake and sleep is therefore able to promote different network strengths throughout 

hippocampal and neocortical structures. In this model, the term consolidation refers to an 
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integration of newly acquired information within associative memory networks, and thus 

differs in its interpretation relative to the forms of consolidation proposed in the current 

model. While being pertinent to declarative memory, this hippocampal based model also 

holds less relevance to procedural memory, since learning of skilled sensory and motor 

tasks can occur without requiring integrity of medial temporal lobe structures (Corkin 

1968; Squire et al. 1984).  

 

Smith (2001) has argued in an impressively comprehensive manner, that simple 

declarative memory demonstrates no reliance on REM sleep, while procedural memory, 

together with a less established memory category termed cognitive procedural memory, 

does appear to require sleep for consolidation. Again, the ideas put forward in the current 

theory are certainly consonant with the notions of Smith, but here we separate out several 

unique stages of procedural memory, and relate those stages to different brain states, not 

only during sleep, but also across wake/time.  

 

Giuditta (Giuditta et al. 1995), and later Stickgold (1998) have offered a two-stage model 

of memory development within sleep, suggesting the sequential influence of multiple 

sleep stages across the night. The first step towards successful consolidation takes place 

during SWS which predominates early in the sleep cycle. A subsequent, complementary 

process then develops during REM sleep, which predominates later in the night, finally 

completing the goal of consolidation. As can been seen, the current model does not 

contradict such a process; simply that the sequential hypothesis of Giuditta and Stickgold 

focused specifically on sleep, without detailed discussion of the differential effects of 

initial wake/time in producing behaviorally unique forms of consolidation. Indeed, it may 

be that for certain tasks (e.g., a visual discrimination paradigm), consolidation-based 

enhancement is achieved by a successive, early and late sleep-stage mechanism as 

proposed by these authors. This does not, however, appear to be the case for procedural 

motor learning (Walker et al. 2002).  

 

Finally, Karni et al. (1998) have proposed an innovative model of procedural learning 

that also involves two successive time-dependent stages. An initial “fast” stage of 
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learning occurs during task engagement, similar to the acquisition stage outlined in the 

current theory. Following these practice-dependent improvements, a second “slow” 

incremental learning phase then continues for hours to weeks, which may or may not 

need additional task engagement to develop over the long term. In this sense, the second 

stage is akin to a process of general consolidation developing as a function of time per se, 

similar to the classical model outlined in Figure 2A. While the current model does not 

suggest that the tenets of this former theory are incorrect, it is uniquely different to the 

slow and fast learning model of Karni et al. It builds on this model both in terms of the 

very specific behavioral forms of consolidation that it describes – one conferring 

stabilization, the other enhancement – and differs also in its dissociation regarding the 

contributions of specific brain states and sleep stages. Based on the conception of 

different forms of consolidation as outlined here, it is possible to suggested that the 

slowest learning components described by Karni et al. over many weeks is actually the 

continuing cycle of task repetition followed critically by subsequent sleep and thus CBE. 

In this sense, there is a multiplicative effect of CBE during repeated nights of sleep with 

intervening task exposure over long time periods.  

 

In summary, the model of procedural memory formation described thus far clearly 

supports several aspects of previously conceived theories of learning and consolidation. It 

also advances these concepts, adding new descriptive and mechanistic levels of memory 

stage formation, and separates out the unique contributions of different brain states and 

time.  

 

2.4. Considerations on mechanisms of learning during sleep  

 

In the remainder of this article, I will focus on several speculative biological mechanisms, 

relating specifically to sleep-dependent learning, that could produce CBE. I will initially 

consider the basic processes that regulate synaptic modification, and follow with a 

discussion of several candidate mechanisms of sleep-dependent plasticity at three 

descriptive levels: (a) electrophysiological (b) neurochemical and (c) molecular and 

cellular. 
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2.4.1. Regulation of synaptic plasticity. Many neuronal models of synaptic plasticity 

focus on rules of Hebbian learning (Hebb 1949). While Hebbian learning remains 

controversial (Abbott & Nelson 2000), there is evidence that it forms at least one of the 

processes regulating plasticity by modulation of synaptic sensitivity, termed potentiation 

(for recent reviews see Abel & Lattal 2001; Soderling & Derkach 2000). Through the 

action of both neurochemical and neurophysiological signals, synapses can either be 

potentiated, leading to enhanced sensitivity over time (long-term potentiation –  LTP) or 

depotentiated, leading to reduced sensitivity (long-term depression – LTD).  

 

In the case of LTP, the release of presynaptic neurotransmitter in coincidence with the 

subsequent excitation of a postsynaptic action potential will strengthen a particular 

synapse. During this scenario, excitation of glutamate NMDA receptors allows 

extracellular calcium to flood the postsynaptic terminal. This triggers a variety of 

intracellular events such as the activation of kinase enzyme cascades, together with the 

release of additional intracellular calcium. As a result, key genes important to plasticity 

are upregulated, leading to the phosphorylation of additional receptors and enhancement 

of synaptic sensitivity. (Abel & Lattal 2001; Soderling & Derkach 2000). 

 

If there is no subsequent postsynaptic action potential, or its coincidence is not tightly 

coupled with the presynaptic action, the synapse will instead undergo LTD. The 

mechanisms of LTD appear to rely on low-frequency trains of stimulation in the 0.5- to 

4-Hz range (Braunewell & Manahan-Vaughan 2001; Kemp & Bashir 2001; Lisman 

1989). As a result, NMDA receptors are stimulated at subthreshold levels, triggering 

much lower levels of calcium in the postsynaptic terminal relative to the condition of 

LTP. The lower concentration and prolonged calcium entry elicits a different set of 

chemical cascades, primarily involving phosphatase activity (Lisman 1989). Synaptic 

sensitivity is therefore reduced, because of dephosphorylation of postsynaptic receptors 

(Braunewell & Manahan-Vaughan 2001; Kemp & Bashir 2001). LTD is considered to be 

as important for efficient plasticity as LTP, since continued potentiation alone would 

eventually lead to a grossly overpotentiated and inefficient network. Subtle adjustments 
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of these two processes are therefore able to help regulate the synaptic anatomy of learned 

behaviors.  

 

How then does the neurobiology of the sleeping brain relate to such processes? Below I 

consider several non–mutually exclusive mechanisms that have the potential to regulate 

synaptic plasticity during sleep at a variety of different levels.  

 

2.4.2. Electrophysiology: Sleep oscillations, burst activity and reactivation. 

Throughout the sleep cycle, both REM and NREM sleep stages contain numerous unique 

electrophysiological events. Many of these electrical phenomena have been implicated in 

the process of plasticity and learning by way of supporting mechanisms of synaptic 

potentiation.  

 

Several theories have focused on low amplitude 7- to 14-Hz synchronous waveforms that 

propagate in thalamocortical networks, termed sleep spindle (Steriade et al. 1993). 

Steriade  (Steriade 1997; 1999) and Sejnowski and Destexhe (2000) have offered learning 

related theories pertaining to these phasic sleep spindle oscillations, suggesting that their 

influence would provide strong depolarizing effects on projection targets in the 

neocortex, similar to spike trains normally involved in synaptic potentiation (Contreras et 

al. 1997; Sejnowski & Destexhe 2000). As a consequence, waves of Ca2+ can flood into 

pyramidal neurons, a well recognized and highly potent trigger for plastic events that 

potentiate synaptic sensitivity (Soderling 1993; Soderling & Derkach 2000) (Figure 6). 

Indeed, Steriade and colleagues (Steriade 2001) has provided experimental evidence to 

show that cortical neurons driven by frequency trains similar to sleep spindles can 

produce lasting changes in the responsiveness of these networks. There is also indirect 

behavioral evidence supporting these theories. For example, in humans, Fogel et al. 

(2001) have demonstrated that following training on a procedural motor task, the number 

of sleep spindles increased by more than 40% compared with the night of sleep prior to 

training. Walker et al. (2002) have also demonstrated that sleep-dependent motor skill 

learning is correlated positively with stage 2 NREM sleep, particularly in the last quarter 

of the night, when spindle density peaks (De Gennaro et al. 2000).  
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Phasic events during REM sleep have also been associated with learning. The 

endogenous PGO waves of REM sleep provide a burst stimulus (300–500 Hz) throughout 

neuronal networks, which could triggering pronounced influxes of intracellular Ca2+, 

leading to LTP (Figure 6). Datta (2000) has provided evidence that the occurrence of 

these REM sleep associated bursts display a strong positive relationship with successful 

avoidance learning in rats. Furthermore, Sanford et al. (2001) have demonstrated that fear 

conditioning increases the amplitude of elicited PGO waves during REM sleep in rats, 

indicating a homeostatic role for this REM-related event in learning related plasticity. It 

is also of note that PGO waves occur in a phase-locked manner with theta wave activity 

during REM sleep (Karashima et al. 2002). It is known that experimental burst 

stimulation to regions of the hippocampus at the peak of the theta phase induce LTP, but 

the same burst applied at the trough of the theta phase will trigger LTD (Holscher et al. 

1997; Pavlides et al. 1988). As such, this PGO mechanism may serve as an endogenous 

mediator of synaptic regulation based on its coincidence with theta wave oscillations. 

Though there is some data to support the occurrence of PGO-like activity in nonhuman 

primates (Datta 1997), clear demonstrations of such wave forms in the human brain 

remain scarce (Peigneux et al. 2001b). 

 

In contrast to the faster spindle activity or PGO bursts, slower sleep oscillations occurring 

in the deepest stages of NREM, expressed in the delta range (0.5–4 Hz) and below (<1 

Hz), may also play a role in sleep-dependent plasticity (Sejnowski & Destexhe 2000; 

Steriade 1997; 1999). One possibility noted by Benington & Frank (2003) is that these 

slow oscillations could trigger LTD, instead of LTP. As described in section 2.4.1, 

synaptic depotentiation is critically regulated by low frequency stimulation trains, similar 

to the oscillations of SWS (Barr et al. 1995; Kourrich & Chapman 2003). The prolonged 

bouts of SWS activity during early night sleep may result in subthreshold stimulation of 

NMDA receptors, leading to the events of LTD (Figure 6). Yet this does not necessarily 

mean that a memory is being “erased.” Instead, early night slow wave activity has the 

potential to actually refine and restructure neural circuits by way of synaptic 

depotentiation in the endeavor of improving synaptic efficiency. For example, a memory 



 

 33

representation established during waking may be unrefined in its early form. Subsequent 

SWS would selectively depotentiate unnecessary synapses in this verbose network, 

leaving only the required connections necessary for efficient use. The remaining 

connections would then be available for LTP during later REM or stage 2 NREM sleep. 

 

Yet if these slow and fast synchronous events are primarily a distributed property 

throughout the brain, how do such global phenomena selectively assist a discrete network 

of neurons crucial to a specific “memory”? It is possible that the initial experience-

dependent activity during acquisition primes these specific networks, leaving them with a 

heightened level of excitability which carries over into sleep. As such, these networks 

would be passive selectivity by their increased responsivity over those that had not 

previously been subject to waking experience-dependent activity.  

 

At a systems level, several studies have demonstrated that the collective neuronal firing 

patterns recorded in the hippocampi of rats during the performance of spatial maze 

running are replayed during subsequent SWS and REM sleep episodes, albeit at relatively 

different temporal speeds (Louie & Wilson 2001; Poe et al. 2000; Skaggs & McNaughton 

1996; Wilson & McNaughton 1994). In a similar paradigm, Dave and Margoliash (2000; 

Dave et al. 1998) have shown that waking patterns of premotor activity during song 

learning in the zebra finch, are replayed in a temporally and structurally similar manner 

during sleep.  

 

Related evidence of neural reactivation has also been described following learning of an 

implicit motor task in humans. Using PET imaging, Maquet and colleagues have 

demonstrated that patterns of brain activity elicited when subjects practice a motor 

memory reaction time test prior to sleep, reappear during subsequent REM sleep 

episodes, while no such replay is seen in control subjects who received no daytime 

training (Maquet et al. 2000). Most important, when retested the next morning, subjects’ 

performance had improved significantly relative to the evening training sessions, 

although there was no report that the degree of reactivation correlated with the amount of 

subsequent performance improvement the following morning.  
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These studies suggest that sleep-dependent neuronal replay is expressed throughout 

different memory domains including medial temporal lobe structures and procedural motor 

systems, as well as across different species. While there is only limited proof that these 

reactivations provide beneficial effects on postsleep retest performance at the human level, 

the function of such replay is hypothesized to allow for the adaptation of synaptic strengths 

within specific networks. Based on the current understanding of LTP mechanisms, is seems 

likely that this reactivation of pre- and postsynaptic terminals in close synchrony during 

sleep would trigger robust potentiation within local networks (Figure 6). 

 

2.4.3. Neurochemistry: Relative ratio of aminergic to cholinergic modulation. The 

alternation of NREM and REM sleep is driven by marked fluctuations in the 

concentration of central cholinergic and aminergic neuromodulators. A substantial 

amount of data, independent of the sleep field, has also demonstrated the critical 

involvement of these transmitters in the regulation of activity-dependent synaptic 

plasticity (for reviews, see Foehring & Lorenzon 1999; Gu 2002).  

 

These neuromodulators can modify the responsiveness of glutamatergic neurons by first 

resetting excitatory thresholds (via increasing transmitter release or postsynaptic 

responses) (Brocher et al. 1992; Kirkwood et al. 1999) and second triggering intracellular 

second messengers as a result of raised intracellular Ca2+ levels, up regulating gene 

expression (Abel & Lattal 2001; Kandel 1991).  

 

Concentrations of these neuromodulators, particularly acetylcholine, are low during 

NREM relative to waking. However, during REM sleep, there is a significant increase in 

cholinergic tone, which has been considered to play a role in sleep-dependent plasticity. 

For example, Graves and colleagues (Graves et al. 2001) have postulated a plasticity role 

for raised cholinergic activity during REM sleep through the activation of muscarinic 

receptor subtypes that trigger intracellular kinase cascades, leading to gene expression. 

They also add a tentative functional role for the lowered aminergic tone during REM 

sleep, highlighting the fact that certain types of serotonergic receptors are negatively 
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coupled to kinase mechanisms. As a result, the attenuation of aminergic activity in REM 

sleep may also relieve serotonergic inhibition of these kinase cascades, again leading to 

upregulated gene expression (Figure 6).  

 

There is also a burgeoning literature describing a role for other nontypical 

neuromodulators in memory consolidation such as hormonal molecules including 

corticoids and melatonin (Daw et al. 1991; El-Sherif et al. 2003), cytokines (Rachal Pugh 

et al. 2001), and even gaseous substances such as nitric oxide (Holscher 1997). While 

receiving little attention regarding sleep-dependent plasticity (Plihal & Born 1999), these 

substances also demonstrate dramatic state-dependent shifts in concentration across the 

wake-sleep cycle (Pace-Schott & Hobson 2002), and may have potential influences on 

neuronal plasticity during REM and NREM.  

 

Although encouraging, direct evidence implicating postsleep behavioral learning 

associated with changes in neurotransmitter concentration during either NREM or REM 

sleep remains scarce. Yet, such models do provide testable hypotheses by either 

facilitating or blocking the actions of these neuromodulators during sleep and then 

investigate the postsleep behavioral consequences.  

 

2.4.4. Molecular and Cellular processes: Protein synthesis and gene expression.  

A key mechanism regulating the plastic nature of neuronal structure and function is the 

rapid activation of genetic machinery responsible for producing a host of synaptic 

molecules. Pioneering work by Cirelli and Tononi has indicated that many of the known 

immediate early genes (IEGs) are preferentially upregulated during wake compared with 

sleep, concluding that these molecular components of learning may not necessarily be 

sleep-dependent (Cirelli & Tononi 1998; 2000a; 2000b). Nevertheless, they do not 

dismiss the idea of sleep-specific gene activation, since a select number of such genes 

were found to be upregulated in sleep. However, the function of these genes remains 

uncharacterized. 
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Figure 6 (Walker). Sleep-dependent influences on mechanisms of synaptic plasticity 
 
From left to right: Low frequency synchronous oscillations (<1 Hz, and 1–4 Hz) during NREM 
SWS trigger slow entry of calcium (Ca2+) into the postsynaptic cell. These conditions prompt 
intracellular activation of protein phosphotase enzymes, which dephosphorylate existing receptors 
and calcium-calmodulin dependent protein kinase (CaMKII). Together, these effects 
subsequently reduce neuronal sensitivity over time, resulting in long-term depression (LTD). 
 
Faster, phasic synchronous electrical bursts during NREM, such as sleep spindles or PGO waves 
during REM, result in rapid, high-concentration depolarizing waves of Ca2+ into the postsynaptic 
cell. The fast influx of Ca2+ acts as a potent upregulator of CaMKII, phosphorylating new 
postsynaptic AMPA receptors. As a result, glutamatergic transmission is enhanced, leading to 
increased excitability within that circuit, and thus to long-term potentiation (LTP).  
NREM and REM sleep reactivation (“replay”) of local networks established during waking 
continues to facilitate coincident firing between pre- and postsynaptic terminals during sleep, 
activating glutamatergic NMDA receptors that allow rapid influx of Ca2+. Together with the 
additional release of intracellular Ca2+ ([Ca2+]i ), CaMKII is again activated resulting in the above 
described LTP effects.  
 
Finally, enhanced cholinergic tone during REM sleep triggers stimulation of muscarinic subtype 
receptors (M1 and M4). Subsequent intracellular signal transduction cascades begin. Activation of 
adenylate cyclase (AC) in turn activates proteins kinase A (PKA). PKA then activates the 
transcription factor cAMP response element-binding protein (CREB), a potent trigger of gene 
expression required for the synthesis of new proteins important for LTP.  
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Many of the studies profiling gene expression during sleep have done so without prior 

use of learning paradigms, and as such, one may therefore not expect to find evidence of 

learning-related, sleep-dependent gene expression. Using just such a learning paradigm, 

Ribeiro and colleagues have investigated the expression of zif-268, a plasticity associated 

IEG, in rats exposed to either rich sensorimotor experiences or benign control 

environments (nonexposed). As in previous studies, there was a generalized down-

regulation of zif-268 during subsequent SWS and REM sleep in the nonexposed control 

group (although behavioral state measurements did not include surface EMG or EEG 

recordings). However, in the exposed group, there was a significant upregulation of zif-

268 during REM sleep episodes (Ribeiro et al. 1999), indicative of increased neuronal 

plasticity windows during REM sleep following enriched waking experience.  

 

Ribeiro and colleagues have also identify the temporal stage progression and anatomical 

specificity of zif-268 expression across intervals of wake, SWS and REM sleep following 

LTP induction in the hippocampus (Ribeiro et al. 2002). Interestingly they report a three-

phase sequence of expression, the first of which begins soon after stimulation and peaks 

around 3 hour during the initial waking interval, the second during early REM sleep and 

the third during late REM sleep. As these stages progressed, so too did the anatomical 

propagation of zif-268 expression, reaching associated limbic structures during early 

REM, and extending to motor and somatosensory cortices in late REM. Expression of 

zif-268 ceased during SWS periods.  

 

It is interesting to note the close parallels between the first wave of gene expression 

described by Ribeiro et al. and the initial waking stabilization time course outlined in this 

model, as well as the continuing expression during REM sleep and the consolidation-

based enhancement stage described in this current model. Similar, discrete time windows 

of gene expression have been demonstrated in numerous paradigms of plasticity, 

suggesting the occurrence of many successive waves of gene transcription for at least 24 

hours following initial synaptic stimulation (Cavallaro et al. 2002; Igaz et al., 2002). The 
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fact that gene transcription can continue for many hours after the initial cellular trigger 

means that quantifying “late” as opposed to “early” gene expression is equally critical to 

understanding the molecular mechanisms associated with sleep-dependent learning. This 

contention becomes particularly germane considering that sleep, and the associated CBE, 

generally occurs many hours following acquisition. Indeed, behavioral data suggest that 

tasks learned as much as 12 hours prior to the onset of sleep still trigger sleep-dependent 

enhancements in performance (Stickgold et al. 2000b; Walker et al. 2002; 2003b).  

 

At a cellular level, the rate of cerebral protein synthesis has been positively correlated 

with the amount of NREM sleep in rats (Ramm & Smith 1990). Similar relationships 

between sleep and markers of protein synthesis have also been elucidated in numerous 

brain regions of the monkey (Nakanishi et al. 1997). In addition, Smith et al. (1991) have 

shown that administration of protein synthesis inhibitors during REM sleep windows in 

rats, thought to be critical for consolidation, prevents behavioral improvement following 

the sleep period, while groups that receive saline during this time show normal postsleep 

learning. 

 

More recently, a form of sleep-dependent plasticity at a cellular level has been elegantly 

demonstrated during early postnatal development of the cat visual system (Shaffery et al. 

1998; 1999). Brief periods of monocular visual deprivation during critical periods of 

development can lead to the remodeling of synaptic connectivity, with the deprived eye's 

inputs to cortical neurons being first functionally weakened and then anatomically 

diminished (Antonini & Stryker 1993).  

 

Frank et al. (2001) have shown that when 6 hours of monocular deprivation are followed 

by 6 hours of sleep, the size of the monocularity shift doubles. In contrast, if the cats are 

kept awake (in the dark so that there is no input to either eye) for the same 6 hours 

following monocular deprivation, a nonsignificant reduction in the size of the shift was 

observed. These studies suggest that sleep contributes as much to developmental changes in 

synaptic connectivity as does visual experience, presumably by modifying the initial 

changes which occurred during the prior period of monocular deprivation. In contrast, 
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sleep-deprivation results in a loss of previously formed, experience-dependent synaptic 

changes. Furthermore, it is not simply that a nonwaking brain state can achieve such 

results, since, as the authors point out, the state of anesthesia actually inhibits ocular 

column plasticity, in stark contrast to the effects of sleep (Rauschecker & Hahn 1987). 

 

Complementing these findings, Shaffery et al. (2002) have demonstrated sleep-dependent 

modulation of plasticity in the rat visual cortex. Using electrical stimulation techniques, 

they have firstly been able to produce increased excitability (potentation) in specific 

layers of the visual cortex in young rats (up to 30 days old). After this early 

developmental stage, the ability to potentate these cortical layers was not possible. 

However, by depriving rats of REM sleep, they were able to extend this window of 

plasticity by as much as 7 additional days. These findings were taken to suggest that 

REM sleep, in conjunction with visual experience, may serve a critical function in 

modulating the initial course of visual cortex maturation.  

 

Although these demonstrations of sleep-dependent plasticity were performed during the 

early stages of development, and any relation to mature brain function warrants caution, 

they represent some of the most decisive evidence yet in favor of sleep-dependent 

modification of cell structure and plasticity. 

 

Therefore, while an agreement on the nature of gene expression, protein synthesis, and 

cellular plasticity in sleep is far from complete, the potential for sleep to trigger specific 

molecular and cellular events involved in synaptic plasticity clearly exists, with the 

relationship to behavioral learning being increasingly noted.  

 

In summary, there appears to be a host of sleep-specific mechanisms that offer the 

potential for synaptic modification, based on the known mechanisms of synaptic 

potentation, complemented by experimental evidence of sleep-dependent plasticity at the 

molecular, cellular, and systems level. 

 

 



 

 40

3. Conclusions 

 

Refined methodologies, together with increasingly detailed levels of descriptive analysis 

provide convergent evidence that sleep plays an important role in the processes of 

learning and memory formation. However, there has been significantly less of a 

consensus regarding the precise stage or stages of memory development where sleep is 

considered either a necessity, simply favorable, or not important.  

 

This review has offered a new model of procedural learning consisting of acquisition, 

followed by two specific stages of consolidation, one involving a process of stabilization, 

the other involving a delayed or latent phase of enhanced learning. Psychophysiological 

evidence indicates that initial acquisition does not fundamentally rely on sleep (although 

demonstrations of sleep-associated acquisition do exist). This is also true for the 

stabilization of procedural memories, with durable representations, resistant to 

interference, clearly developing in a successful manner during time awake (or just time 

per se). However, the relative efficacy of wake and sleep in the stabilization process 

remains unexplored.  

 

In contrast, the enhancing stage of consolidation resulting in additional performance 

improvements appears to rely on the process of sleep, with evidence for specific sleep-

stage dependencies across sensory and motor domains. The factor(s) influencing the 

sleep-stage dependency remain somewhat unclear but may be determined by the 

particular sensory or motor modality of the procedural task, or the complexity of that 

task. Mechanistically, several candidate mechanisms that could trigger sleep-specific 

synaptic plasticity have been considered, ranging from the upregulation of plasticity-

associated genes to the occurrence of unique electrical events throughout neuronal 

networks.  

 

Separating discrete stages of memory, and identifying their relation to specific brain 

states, remains an essential challenge for any inclusive model of memory formation. 

Attempting to attribute memory processes exclusively to one single behavioral state such 
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as wake, or sleep, seems both intuitively misplaced and biologically inefficient. Such 

polarized approaches have undoubtedly contributed to the separation of those either in 

favor or against the role of sleep in memory, cultivated viewpoints only at each extreme. 

Such a separation is dangerous, and can force a once-progressive research field into a 

regressive state, more concerned with defense than with extension. Through 

distinguishing specific forms of memory, and most important, identifying unique stages 

of consolidation, we can begin considering a new level of appreciation of how each 

memory stage relates to the different brain states of wake, sleep and specific stages of 

sleep. In doing so, we are able to move away from the question of whether sleep is the 

key factor responsible for memory formation, and instead, begin disentangling certain 

confusions around the argument of exactly what sleep is or is not required for with regard 

to discrete stages of memory development.  

 

While acquisition and consolidation are clearly important stages in the “life” of a 

memory, there are additional memory processes that have also been considered. These 

include the integration of recently consolidated information with past experiences and 

knowledge, reorganization, reconsolidation following reactivation of a memory, 

translocation, and even erasure of network strengths thus weakening memory 

representations, with which sleep has already been associated (Crick & Mitchison 1983; 

Hasselmo 1999; Poe et al. 2000; Stickgold 2002; Walker et al. 2003a). As our 

understanding of memory-stage development increases, so too should our curiosity 

regarding the distinct contributions that both wake and sleep may offer. 
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